
cmd2 Documentation
Release 1.3

Catherine Devlin and Todd Leonhardt

Sep 18, 2020

Contents

1 Getting Started 3

2 Migrating from cmd 13

3 Features 19

4 Examples 83

5 Plugins 85

6 Testing 87

7 API Reference 89

8 Meta 133

Python Module Index 137

Index 139

i

ii

cmd2 Documentation, Release 1.3

A python package for building powerful command-line interpreter (CLI) programs. Extends the Python Standard
Library’s cmd package.

The basic use of cmd2 is identical to that of cmd.

1. Create a subclass of cmd2.Cmd. Define attributes and do_* methods to control its behavior. Throughout this
documentation, we will assume that you are naming your subclass App:

from cmd2 import Cmd
class App(Cmd):

customized attributes and methods here

2. Instantiate App and start the command loop:

app = App()
app.cmdloop()

Contents 1

https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html

cmd2 Documentation, Release 1.3

2 Contents

CHAPTER 1

Getting Started

Building a new REPL or Command Line Interface application?

Already built an application that uses cmd from the python standard library and want to add more functionality with
very little work?

cmd2 is a powerful python library for building command line applications. Start here to find out if this library is a
good fit for your needs.

• Installation Instructions - how to install cmd2 and associated optional dependencies

• First Application - a sample application showing 8 key features of cmd2

• Integrate cmd2 Into Your Project - adding cmd2 to your project

• Alternatives - other python packages that might meet your needs

• Resources - related links and other materials

1.1 Getting Started

1.1.1 Installation Instructions

cmd2 works on Linux, macOS, and Windows. It requires Python 3.5 or higher, pip, and setuptools. If you’ve got all
that, then you can just:

$ pip install cmd2

Note: Depending on how and where you have installed Python on your system and on what OS you are using, you
may need to have administrator or root privileges to install Python packages. If this is the case, take the necessary
steps required to run the commands in this section as root/admin, e.g.: on most Linux or Mac systems, you can precede
them with sudo:

3

https://en.wikipedia.org/wiki/Read\T1\textendash {}eval\T1\textendash {}print_loop
https://en.wikipedia.org/wiki/Command-line_interface
https://docs.python.org/3/library/cmd.html
https://pypi.org/project/pip
https://pypi.org/project/setuptools

cmd2 Documentation, Release 1.3

$ sudo pip install <package_name>

Prerequisites

If you have Python 3 >=3.5 installed from python.org, you will already have pip and setuptools, but may need to
upgrade to the latest versions:

On Linux or OS X:

$ pip install -U pip setuptools

On Windows:

> python -m pip install -U pip setuptools

Install from PyPI

pip is the recommended installer. Installing packages from PyPI with pip is easy:

$ pip install cmd2

This will install the required 3rd-party dependencies, if necessary.

Install from GitHub

The latest version of cmd2 can be installed directly from the master branch on GitHub using pip:

$ pip install -U git+git://github.com/python-cmd2/cmd2.git

Install from Debian or Ubuntu repos

We recommend installing from pip, but if you wish to install from Debian or Ubuntu repos this can be done with
apt-get.

For Python 3:

$ sudo apt-get install python3-cmd2

This will also install the required 3rd-party dependencies.

Warning: Versions of cmd2 before 0.8.9 should be considered to be of unstable “beta” quality and should not be
relied upon for production use. If you cannot get a version >= 0.8.9 from your OS repository, then we recommend
installing from either pip or GitHub - see Install from PyPI or Install from GitHub.

Upgrading cmd2

Upgrade an already installed cmd2 to the latest version from PyPI:

4 Chapter 1. Getting Started

https://www.python.org
https://pypi.org/project/pip
https://pypi.org/project/setuptools
https://pypi.org/project/pip
https://pypi.org
https://pypi.org/project/pip
https://pypi.org/project/pip
https://pypi.org

cmd2 Documentation, Release 1.3

pip install -U cmd2

This will upgrade to the newest stable version of cmd2 and will also upgrade any dependencies if necessary.

Uninstalling cmd2

If you wish to permanently uninstall cmd2, this can also easily be done with pip:

$ pip uninstall cmd2

macOS Considerations

macOS comes with the libedit library which is similar, but not identical, to GNU Readline. Tab completion for cmd2
applications is only tested against GNU Readline.

There are several ways GNU Readline can be installed within a Python environment on a Mac, detailed in the following
subsections.

gnureadline Python module

Install the gnureadline Python module which is statically linked against a specific compatible version of GNU Read-
line:

$ pip install -U gnureadline

readline via conda

Install the readline package using the conda package manager included with the Anaconda Python distribution:

$ conda install readline

readline via brew

Install the readline package using the Homebrew package manager (compiles from source):

$ brew install openssl
$ brew install pyenv
$ brew install readline

Then use pyenv to compile Python and link against the installed readline

1.1.2 First Application

Here’s a quick walkthrough of a simple application which demonstrates 8 features of cmd2:

• Settings

• Commands

• Argument Processing

1.1. Getting Started 5

https://pypi.org/project/pip
http://thrysoee.dk/editline/
https://pypi.org/project/gnureadline

cmd2 Documentation, Release 1.3

• Generating Output

• Help

• Shortcuts

• Multiline Commands

• History

If you don’t want to type as we go, you can download the complete source for this example.

Basic Application

First we need to create a new cmd2 application. Create a new file first_app.py with the following contents:

#!/usr/bin/env python
"""A simple cmd2 application."""
import cmd2

class FirstApp(cmd2.Cmd):
"""A simple cmd2 application."""

if __name__ == '__main__':
import sys
c = FirstApp()
sys.exit(c.cmdloop())

We have a new class FirstApp which is a subclass of cmd2.Cmd. When we tell python to run our file like this:

$ python first_app.py

it creates an instance of our class, and calls the cmdloop() method. This method accepts user input and runs
commands based on that input. Because we subclassed cmd2.Cmd, our new app already has a bunch of features built
in.

Congratulations, you have a working cmd2 app. You can run it, and then type quit to exit.

Create a New Setting

Before we create our first command, we are going to add a setting to this app. cmd2 includes robust support for
Settings. You configure settings during object initialization, so we need to add an initializer to our class:

def __init__(self):
super().__init__()

Make maxrepeats settable at runtime
self.maxrepeats = 3
self.add_settable(cmd2.Settable('maxrepeats', int, 'max repetitions for speak

→˓command'))

In that initializer, the first thing to do is to make sure we initialize cmd2. That’s what the super().__init__()
line does. Next create an attribute to hold the setting. Finally, call the add_settable()method with a new instance
of a Settable() class. Now if you run the script, and enter the set command to see the settings, like this:

6 Chapter 1. Getting Started

cmd2 Documentation, Release 1.3

$ python first_app.py
(Cmd) set

you will see our maxrepeats setting show up with it’s default value of 3.

Create A Command

Now we will create our first command, called speak which will echo back whatever we tell it to say. We are going
to use an argument processor so the speak command can shout and talk piglatin. We will also use some built in
methods for generating output. Add this code to first_app.py, so that the speak_parser attribute and the
do_speak() method are part of the CmdLineApp() class:

speak_parser = argparse.ArgumentParser()
speak_parser.add_argument('-p', '--piglatin', action='store_true', help='atinLay')
speak_parser.add_argument('-s', '--shout', action='store_true', help='N00B EMULATION
→˓MODE')
speak_parser.add_argument('-r', '--repeat', type=int, help='output [n] times')
speak_parser.add_argument('words', nargs='+', help='words to say')

@cmd2.with_argparser(speak_parser)
def do_speak(self, args):

"""Repeats what you tell me to."""
words = []
for word in args.words:

if args.piglatin:
word = '%s%say' % (word[1:], word[0])

if args.shout:
word = word.upper()

words.append(word)
repetitions = args.repeat or 1
for _ in range(min(repetitions, self.maxrepeats)):

.poutput handles newlines, and accommodates output redirection too
self.poutput(' '.join(words))

Up at the top of the script, you’ll also need to add:

import argparse

There’s a bit to unpack here, so let’s walk through it. We created speak_parser, which uses the argparse module
from the Python standard library to parse command line input from a user. There is nothing thus far that is specific to
cmd2.

There is also a new method called do_speak(). In both cmd and cmd2, methods that start with do_ become new
commands, so by defining this method we have created a command called speak.

Note the with_argparser() decorator on the do_speak() method. This decorator does 3 useful things for us:

1. It tells cmd2 to process all input for the speak command using the argparser we defined. If the user input
doesn’t meet the requirements defined by the argparser, then an error will be displayed for the user.

2. It alters our do_speak method so that instead of receiving the raw user input as a parameter, we receive the
namespace from the argparser.

3. It creates a help message for us based on the argparser.

You can see in the body of the method how we use the namespace from the argparser (passed in as the variable args).
We build an array of words which we will output, honoring both the --piglatin and --shout options.

1.1. Getting Started 7

https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/cmd.html

cmd2 Documentation, Release 1.3

At the end of the method, we use our maxrepeats setting as an upper limit to the number of times we will print the
output.

The last thing you’ll notice is that we used the self.poutput() method to display our output. poutput() is a
method provided by cmd2, which I strongly recommend you use anytime you want to generate output. It provides the
following benefits:

1. Allows the user to redirect output to a text file or pipe it to a shell process

2. Gracefully handles BrokenPipeWarning exceptions for redirected output

3. Makes the output show up in a transcript

4. Honors the setting to strip embedded ansi sequences (typically used for background and foreground colors)

Go run the script again, and try out the speak command. Try typing help speak, and you will see a lovely usage
message describing the various options for the command.

With those few lines of code, we created a command, used an Argument Processor, added a nice help message for our
users, and generated some output.

Shortcuts

cmd2 has several capabilities to simplify repetitive user input: Shortcuts, Aliases, and Macros. Let’s add a shortcut to
our application. Shortcuts are character strings that can be used instead of a command name. For example, cmd2 has
support for a shortcut ! which runs the shell command. So instead of typing this:

(Cmd) shell ls -al

you can type this:

(Cmd) !ls -al

Let’s add a shortcut for our speak command. Change the __init__() method so it looks like this:

def __init__(self):
shortcuts = cmd2.DEFAULT_SHORTCUTS
shortcuts.update({'&': 'speak'})
super().__init__(shortcuts=shortcuts)

Make maxrepeats settable at runtime
self.maxrepeats = 3
self.add_settable(cmd2.Settable('maxrepeats', int, 'max repetitions for speak

→˓command'))

Shortcuts are passed to the cmd2 initializer, and if you want the built-in shortcuts of cmd2 you have to pass them.
These shortcuts are defined as a dictionary, with the key being the shortcut, and the value containing the command.
When using the default shortcuts and also adding your own, it’s a good idea to use the .update() method to modify
the dictionary. This way if you add a shortcut that happens to already be in the default set, yours will override, and
you won’t get any errors at runtime.

Run your app again, and type:

(Cmd) shortcuts

to see the list of all of the shortcuts, including the one for speak that we just created.

8 Chapter 1. Getting Started

cmd2 Documentation, Release 1.3

Multiline Commands

Some use cases benefit from the ability to have commands that span more than one line. For example, you might
want the ability for your user to type in a SQL command, which can often span lines and which are terminated with a
semicolon. Let’s add a multiline command to our application. First we’ll create a new command called orate. This
code shows both the definition of our speak command, and the orate command:

@cmd2.with_argparser(speak_parser)
def do_speak(self, args):

"""Repeats what you tell me to."""
words = []
for word in args.words:

if args.piglatin:
word = '%s%say' % (word[1:], word[0])

if args.shout:
word = word.upper()

words.append(word)
repetitions = args.repeat or 1
for _ in range(min(repetitions, self.maxrepeats)):

.poutput handles newlines, and accommodates output redirection too
self.poutput(' '.join(words))

orate is a synonym for speak which takes multiline input
do_orate = do_speak

With the new command created, we need to tell cmd2 to treat that command as a multi-line command. Modify the
super initialization line to look like this:

super().__init__(multiline_commands=['orate'], shortcuts=shortcuts)

Now when you run the example, you can type something like this:

(Cmd) orate O for a Muse of fire, that would ascend
> The brightest heaven of invention,
> A kingdom for a stage, princes to act
> And monarchs to behold the swelling scene! ;

Notice the prompt changes to indicate that input is still ongoing. cmd2 will continue prompting for input until it sees
an unquoted semicolon (the default multi-line command termination character).

History

cmd2 tracks the history of the commands that users enter. As a developer, you don’t need to do anything to enable
this functionality, you get it for free. If you want the history of commands to persist between invocations of your
application, you’ll need to do a little work. The History page has all the details.

Users can access command history using two methods:

• the readline library which provides a python interface to the GNU readline library

• the history command which is built-in to cmd2

From the prompt in a cmd2-based application, you can press Control-p to move to the previously entered com-
mand, and Control-n to move to the next command. You can also search through the command history using
Control-r. The GNU Readline User Manual has all the details, including all the available commands, and instruc-
tions for customizing the key bindings.

1.1. Getting Started 9

https://docs.python.org/3/library/readline.html
https://en.wikipedia.org/wiki/GNU_Readline
http://man7.org/linux/man-pages/man3/readline.3.html

cmd2 Documentation, Release 1.3

The history command allows a user to view the command history, and select commands from history by number,
range, string search, or regular expression. With the selected commands, users can:

• re-run the commands

• edit the selected commands in a text editor, and run them after the text editor exits

• save the commands to a file

• run the commands, saving both the commands and their output to a file

Learn more about the history command by typing history -h at any cmd2 input prompt, or by exploring
Command History For Users.

Conclusion

You’ve just created a simple, but functional command line application. With minimal work on your part, the application
leverages many robust features of cmd2. To learn more you can:

• Dive into all of the Features that cmd2 provides

• Look at more Examples

• Browse the API Reference

1.1.3 Integrate cmd2 Into Your Project

Once installed, you will want to ensure that your project’s dependencies include cmd2. Make sure your setup.py
includes the following:

install_requires=[
'cmd2>=1,<2',

]

The cmd2 project uses Semantic Versioning, which means that any incompatible API changes will be release with a
new major version number. The public API is documented in the API Reference.

We recommend that you follow the advice given by the Python Packaging User Guide related to install_requires. By
setting an upper bound on the allowed version, you can ensure that your project does not inadvertently get installed
with an incompatible future version of cmd2.

Windows Considerations

If you would like to use Completion, and you want your application to run on Windows, you will need to ensure you
install the pyreadline package. Make sure to include the following in your setup.py:

install_requires=[
'cmd2>=1,<2',
":sys_platform=='win32'": ['pyreadline'],

]

1.1.4 Alternatives

For programs that do not interact with the user in a continuous loop - programs that simply accept a set of arguments
from the command line, return results, and do not keep the user within the program’s environment - all you need are

10 Chapter 1. Getting Started

https://semver.org
https://packaging.python.org/discussions/install-requires-vs-requirements/

cmd2 Documentation, Release 1.3

sys.argv (the command-line arguments) and argparse (for parsing UNIX-style options and flags). Though some people
may prefer docopt or click to argparse.

The curses module produces applications that interact via a plaintext terminal window, but are not limited to simple
text input and output; they can paint the screen with options that are selected from using the cursor keys. However,
programming a curses-based application is not as straightforward as using cmd.

Several Python packages exist for building interactive command-line applications approximately similar in concept
to cmd applications. None of them share cmd2’s close ties to cmd, but they may be worth investigating nonetheless.
Two of the most mature and full featured are:

• Python Prompt Toolkit

• Click

Python Prompt Toolkit is a library for building powerful interactive command lines and terminal applications in
Python. It provides a lot of advanced visual features like syntax highlighting, bottom bars, and the ability to cre-
ate fullscreen apps.

Click is a Python package for creating beautiful command line interfaces in a composable way with as little code as
necessary. It is more geared towards command line utilities instead of command line interpreters, but it can be used
for either.

Getting a working command-interpreter application based on either Python Prompt Toolkit or Click requires a good
deal more effort and boilerplate code than cmd2. cmd2 focuses on providing an excellent out-of-the-box experience
with as many useful features as possible built in for free with as little work required on the developer’s part as possible.
We believe that cmd2 provides developers the easiest way to write a command-line interpreter, while allowing a good
experience for end users. If you are seeking a visually richer end-user experience and don’t mind investing more
development time, we would recommend checking out Python Prompt Toolkit.

1.1.5 Resources

Project related links and other resources:

• cmd

• cmd2 project page

• project bug tracker

• PyOhio 2019: slides, video, examples

Building a new REPL or Command Line Interface application?

Already built an application that uses cmd from the python standard library and want to add more functionality with
very little work?

cmd2 is a powerful python library for building command line applications. Start here to find out if this library is a
good fit for your needs.

• Installation Instructions - how to install cmd2 and associated optional dependencies

• First Application - a sample application showing 8 key features of cmd2

• Integrate cmd2 Into Your Project - adding cmd2 to your project

• Alternatives - other python packages that might meet your needs

• Resources - related links and other materials

1.1. Getting Started 11

https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/argparse.html
https://pypi.org/project/docopt
https://click.palletsprojects.com
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/curses.html
https://docs.python.org/3/library/curses.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://github.com/prompt-toolkit/python-prompt-toolkit
https://click.palletsprojects.com
https://github.com/prompt-toolkit/python-prompt-toolkit
https://click.palletsprojects.com
https://github.com/prompt-toolkit/python-prompt-toolkit
https://click.palletsprojects.com
https://github.com/prompt-toolkit/python-prompt-toolkit
https://docs.python.org/3/library/cmd.html
https://github.com/python-cmd2/cmd2
https://github.com/python-cmd2/cmd2/issues
https://github.com/python-cmd2/talks/blob/master/PyOhio_2019/cmd2-PyOhio_2019.pdf
https://www.youtube.com/watch?v=pebeWrTqIIw
https://github.com/python-cmd2/talks/tree/master/PyOhio_2019/examples
https://en.wikipedia.org/wiki/Read\T1\textendash {}eval\T1\textendash {}print_loop
https://en.wikipedia.org/wiki/Command-line_interface
https://docs.python.org/3/library/cmd.html

cmd2 Documentation, Release 1.3

12 Chapter 1. Getting Started

CHAPTER 2

Migrating from cmd

If you’re thinking of migrating your cmd app to cmd2, this section will help you decide if it’s right for your app, and
show you how to do it.

• Why cmd2 - we try and convince you to use cmd2 instead of cmd

• Incompatibilities - cmd2 is not quite 100% compatible with cmd.

• Minimum Required Changes - the minimum changes required to move from cmd to cmd2. Start your migration
here.

• Next Steps - Once you’ve migrated, here a list of things you can do next to add even more functionality to your
app.

2.1 Migrating From cmd

2.1.1 Why cmd2

cmd

cmd is the Python Standard Library’s module for creating simple interactive command-line applications. cmd is an
extremely bare-bones framework which leaves a lot to be desired. It doesn’t even include a built-in way to exit from
an application!

Since the API provided by cmd provides the foundation on which cmd2 is based, understanding the use of cmd is
the first step in learning the use of cmd2. Once you have read the cmd docs, return here to learn the ways that cmd2
differs from cmd.

cmd2

cmd2 is a batteries-included extension of cmd, which provides a wealth of functionality to make it quicker and easier
for developers to create feature-rich interactive command-line applications which delight customers.

13

https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html

cmd2 Documentation, Release 1.3

cmd2 can be used as a drop-in replacement for cmd with a few minor discrepancies as discussed in the Incompati-
bilities section. Simply importing cmd2 in place of cmd will add many features to an application without any further
modifications. Migrating to cmd2 will also open many additional doors for making it possible for developers to
provide a top-notch interactive command-line experience for their users.

Free Features

After switching from cmd to cmd2, your application will have the following new features and capabilities, without
you having to do anything:

• More robust History. Both cmd and cmd2 have readline history, but cmd2 also has a robust history command
which allows you to edit prior commands in a text editor of your choosing, re-run multiple commands at a time,
and save prior commands as a script to be executed later.

• Users can redirect output to a file or pipe it to some other operating system command. You did remember to use
self.stdout instead of sys.stdout in all of your print functions, right? If you did, then this will work
out of the box. If you didn’t, you’ll have to go back and fix them. Before you do, you might consider the various
ways cmd2 has of Generating Output.

• Users can load script files, which contain a series of commands to be executed.

• Users can create Shortcuts, Aliases, and Macros to reduce the typing required for repetitive commands.

• Embedded python shell allows a user to execute python code from within your cmd2 app. How meta.

• Clipboard Integration allows you to save command output to the operating system clipboard.

• A built-in Timer can show how long it takes a command to execute

• A Transcript is a file which contains both the input and output of a successful session of a cmd2-based app. The
transcript can be played back into the app as a unit test.

Next Steps

In addition to the features you get with no additional work, cmd2 offers a broad range of additional capabilties which
can be easily added to your application. Next Steps has some ideas of where you can start, or you can dig in to all the
Features.

2.1.2 Incompatibilities

cmd2 strives to be drop-in compatible with cmd, however there are a few incompatibilities.

Cmd.emptyline()

The Cmd.emptyline() function is called when an empty line is entered in response to the prompt. By default, in cmd if
this method is not overridden, it repeats and executes the last nonempty command entered. However, no end user we
have encountered views this as expected or desirable default behavior. cmd2 completely ignores empty lines and the
base class cmd.emptyline() method never gets called and thus the empty line behavior cannot be overridden.

Cmd.identchars

In cmd, the Cmd.identchars attribute contains the string of characters accepted for command names. cmd uses
those characters to split the first “word” of the input, without requiring the user to type a space. For example, if

14 Chapter 2. Migrating from cmd

https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html#cmd.Cmd.emptyline
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html#cmd.Cmd.identchars
https://docs.python.org/3/library/cmd.html

cmd2 Documentation, Release 1.3

identchars contained a string of all alphabetic characters, the user could enter a command like L20 and it would
be interpreted as the command L with the first argument of 20.

Since version 0.9.0, cmd2 has ignored identchars; the parsing logic in cmd2 splits the command and arguments
on whitespace. We opted for this breaking change because while cmd supports unicode, using non-ascii unicode
characters in command names while simultaneously using identchars functionality can be somewhat painful. Re-
quiring white space to delimit arguments also ensures reliable operation of many other useful cmd2 features, including
Completion and Shortcuts, Aliases, and Macros.

If you really need this functionality in your app, you can add it back in by writing a Postparsing Hook.

Cmd.cmdqueue

In cmd, the Cmd.cmdqueue attribute contains a list of queued input lines. The cmdqueue list is checked in
cmdloop() when new input is needed; if it is nonempty, its elements will be processed in order, as if entered at
the prompt.

Since version 0.9.13 cmd2 has removed support for Cmd.cmdqueue. Because cmd2 supports running commands
via the main cmdloop(), text scripts, Python scripts, transcripts, and history replays, the only way to preserve con-
sistent behavior across these methods was to eliminate the command queue. Additionally, reasoning about application
behavior is much easier without this queue present.

2.1.3 Minimum Required Changes

cmd2.Cmd subclasses Cmd.cmd from the standard library, and overrides most of the methods. Most apps based on
the standard library can be migrated to cmd2 in just a couple of minutes.

Import and Inheritance

You need to change your import from this:

import cmd

to this:

import cmd2

Then you need to change your class definition from:

class CmdLineApp(cmd.Cmd):

to:

class CmdLineApp(cmd2.Cmd):

Exiting

Have a look at the commands you created to exit your application. You probably have one called exit and maybe a
similar one called quit. You also might have implemented a do_EOF() method so your program exits like many
operating system shells. If all these commands do is quit the application, you may be able to remove them. See
Exiting.

2.1. Migrating From cmd 15

https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html#cmd.Cmd.cmdqueue

cmd2 Documentation, Release 1.3

Distribution

If you are distributing your application, you’ll also need to ensure that cmd2 is properly installed. You will need to
add this to your setup() method in setup.py:

install_requires=[
'cmd2>=1,<2`

]

See Integrate cmd2 Into Your Project for more details.

2.1.4 Next Steps

Once your current application is using cmd2, you can start to expand the functionality by levering other cmd2 features.
The three ideas here will get you started. Browse the rest of the Features to see what else cmd2 can help you do.

Argument Parsing

For all but the simplest of commands, it’s probably easier to use argparse to parse user input. cmd2 provides a
@with_argparser() decorator which associates an ArgumentParser object with one of your commands.
Using this method will:

1. Pass your command a Namespace containing the arguments instead of a string of text.

2. Properly handle quoted string input from your users.

3. Create a help message for you based on the ArgumentParser.

4. Give you a big headstart adding Completion to your application.

5. Make it much easier to implement subcommands (i.e. git has a bunch of subcommands such as git pull,
git diff, etc).

There’s a lot more about Argument Processing if you want to dig in further.

Help

If you have lot of commands in your application, cmd2 can categorize those commands using a one line decorator
@with_category(). When a user types help the available commands will be organized by the category you
specified.

If you were already using argparse or decided to switch to it, you can easily standardize all of your help messages
to be generated by your argument parsers and displayed by cmd2. No more help messages that don’t match what the
code actually does.

Generating Output

If your program generates output by printing directly to sys.stdout, you should consider switching to
poutput(), perror(), and pfeedback(). These methods work with several of the built in Settings to al-
low the user to view or suppress feedback (i.e. progress or status output). They also properly handle ansi colored
output according to user preference. Speaking of colored output, you can use any color library you want, or use the
included cmd2.ansi.style() function. These and other related topics are covered in Generating Output.

If you’re thinking of migrating your cmd app to cmd2, this section will help you decide if it’s right for your app, and
show you how to do it.

16 Chapter 2. Migrating from cmd

https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/cmd.html

cmd2 Documentation, Release 1.3

• Why cmd2 - we try and convince you to use cmd2 instead of cmd

• Incompatibilities - cmd2 is not quite 100% compatible with cmd.

• Minimum Required Changes - the minimum changes required to move from cmd to cmd2. Start your migration
here.

• Next Steps - Once you’ve migrated, here a list of things you can do next to add even more functionality to your
app.

2.1. Migrating From cmd 17

https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html

cmd2 Documentation, Release 1.3

18 Chapter 2. Migrating from cmd

CHAPTER 3

Features

3.1 Features

3.1.1 Argument Processing

cmd2 makes it easy to add sophisticated argument processing to your commands using the argparse python module.
cmd2 handles the following for you:

1. Parsing input and quoted strings like the Unix shell

2. Parse the resulting argument list using an instance of argparse.ArgumentParser that you provide

3. Passes the resulting argparse.Namespace object to your command function. The Namespace includes
the Statement object that was created when parsing the command line. It can be retrieved by calling
cmd2_statement.get() on the Namespace.

4. Adds the usage message from the argument parser to your command.

5. Checks if the -h/--help option is present, and if so, display the help message for the command

These features are all provided by the @with_argparser decorator which is importable from cmd2.

See the either the argprint or decorator example to learn more about how to use the various cmd2 argument processing
decorators in your cmd2 applications.

cmd2 provides the following decorators for assisting with parsing arguments passed to commands:

• cmd2.decorators.with_argparser()

• cmd2.decorators.with_argparser_and_unknown_args()

• cmd2.decorators.with_argument_list()

All of these decorators accept an optional preserve_quotes argument which defaults to False. Setting this argument
to True is useful for cases where you are passing the arguments to another command which might have its own
argument parsing.

19

https://docs.python.org/3/library/argparse.html
https://github.com/python-cmd2/cmd2/blob/master/examples/arg_print.py
https://github.com/python-cmd2/cmd2/blob/master/examples/decorator_example.py

cmd2 Documentation, Release 1.3

Argument Parsing

For each command in the cmd2 subclass which requires argument parsing, create a unique instance of argparse.
ArgumentParser() which can parse the input appropriately for the command. Then decorate the command
method with the @with_argparser decorator, passing the argument parser as the first parameter to the decorator.
This changes the second argument to the command method, which will contain the results of ArgumentParser.
parse_args().

Here’s what it looks like:

import argparse
from cmd2 import with_argparser

argparser = argparse.ArgumentParser()
argparser.add_argument('-p', '--piglatin', action='store_true', help='atinLay')
argparser.add_argument('-s', '--shout', action='store_true', help='N00B EMULATION MODE
→˓')
argparser.add_argument('-r', '--repeat', type=int, help='output [n] times')
argparser.add_argument('word', nargs='?', help='word to say')

@with_argparser(argparser)
def do_speak(self, opts)

"""Repeats what you tell me to."""
arg = opts.word
if opts.piglatin:

arg = '%s%say' % (arg[1:], arg[0])
if opts.shout:

arg = arg.upper()
repetitions = opts.repeat or 1
for i in range(min(repetitions, self.maxrepeats)):

self.poutput(arg)

Warning: It is important that each command which uses the @with_argparser decorator be passed a unique
instance of a parser. This limitation is due to bugs in CPython prior to Python 3.7 which make it impossible to
make a deep copy of an instance of a argparse.ArgumentParser.

See the table_display example for a work-around that demonstrates how to create a function which returns a unique
instance of the parser you want.

Note: The @with_argparser decorator sets the prog variable in the argument parser based on the name of the
method it is decorating. This will override anything you specify in prog variable when creating the argument parser.

Help Messages

By default, cmd2 uses the docstring of the command method when a user asks for help on the command. When
you use the @with_argparser decorator, the docstring for the do_* method is used to set the description for the
argparse.ArgumentParser.

With this code:

import argparse
from cmd2 import with_argparser

(continues on next page)

20 Chapter 3. Features

https://github.com/python-cmd2/cmd2/blob/master/examples/table_display.py

cmd2 Documentation, Release 1.3

(continued from previous page)

argparser = argparse.ArgumentParser()
argparser.add_argument('tag', help='tag')
argparser.add_argument('content', nargs='+', help='content to surround with tag')
@with_argparser(argparser)
def do_tag(self, args):

"""create a html tag"""
self.stdout.write('<{0}>{1}</{0}>'.format(args.tag, ' '.join(args.content)))
self.stdout.write('\n')

the help tag command displays:

usage: tag [-h] tag content [content ...]

create a html tag

positional arguments:
tag tag
content content to surround with tag

optional arguments:
-h, --help show this help message and exit

If you would prefer you can set the description while instantiating the argparse.ArgumentParser and
leave the docstring on your method empty:

import argparse
from cmd2 import with_argparser

argparser = argparse.ArgumentParser(description='create an html tag')
argparser.add_argument('tag', help='tag')
argparser.add_argument('content', nargs='+', help='content to surround with tag')
@with_argparser(argparser)
def do_tag(self, args):

self.stdout.write('<{0}>{1}</{0}>'.format(args.tag, ' '.join(args.content)))
self.stdout.write('\n')

Now when the user enters help tag they see:

usage: tag [-h] tag content [content ...]

create an html tag

positional arguments:
tag tag
content content to surround with tag

optional arguments:
-h, --help show this help message and exit

To add additional text to the end of the generated help message, use the epilog variable:

import argparse
from cmd2 import with_argparser

argparser = argparse.ArgumentParser(description='create an html tag',

(continues on next page)

3.1. Features 21

cmd2 Documentation, Release 1.3

(continued from previous page)

epilog='This command can not generate tags with
→˓no content, like
.')
argparser.add_argument('tag', help='tag')
argparser.add_argument('content', nargs='+', help='content to surround with tag')
@with_argparser(argparser)
def do_tag(self, args):

self.stdout.write('<{0}>{1}</{0}>'.format(args.tag, ' '.join(args.content)))
self.stdout.write('\n')

Which yields:

usage: tag [-h] tag content [content ...]

create an html tag

positional arguments:
tag tag
content content to surround with tag

optional arguments:
-h, --help show this help message and exit

This command can not generate tags with no content, like

Warning: If a command foo is decorated with one of cmd2’s argparse decorators, then help_foo will not be
invoked when help foo is called. The argparse module provides a rich API which can be used to tweak every
aspect of the displayed help and we encourage cmd2 developers to utilize that.

Argument List

The default behavior of cmd2 is to pass the user input directly to your do_* methods as a string. The object passed
to your method is actually a Statement object, which has additional attributes that may be helpful, including
arg_list and argv:

class CmdLineApp(cmd2.Cmd):
""" Example cmd2 application. """

def do_say(self, statement):
statement contains a string
self.poutput(statement)

def do_speak(self, statement):
statement also has a list of arguments
quoted arguments remain quoted
for arg in statement.arg_list:

self.poutput(arg)

def do_articulate(self, statement):
statement.argv contains the command
and the arguments, which have had quotes
stripped
for arg in statement.argv:

self.poutput(arg)

22 Chapter 3. Features

https://docs.python.org/3/library/argparse.html

cmd2 Documentation, Release 1.3

If you don’t want to access the additional attributes on the string passed to you‘‘do_*‘‘ method you can still have
cmd2 apply shell parsing rules to the user input and pass you a list of arguments instead of a string. Apply the
@with_argument_list decorator to those methods that should receive an argument list instead of a string:

from cmd2 import with_argument_list

class CmdLineApp(cmd2.Cmd):
""" Example cmd2 application. """

def do_say(self, cmdline):
cmdline contains a string
pass

@with_argument_list
def do_speak(self, arglist):

arglist contains a list of arguments
pass

Unknown Positional Arguments

If you want all unknown arguments to be passed to your command as a list of strings, then decorate the command
method with the @with_argparser_and_unknown_args decorator.

Here’s what it looks like:

import argparse
from cmd2 import with_argparser_and_unknown_args

dir_parser = argparse.ArgumentParser()
dir_parser.add_argument('-l', '--long', action='store_true', help="display in long
→˓format with one item per line")

@with_argparser(dir_parser, with_unknown_args=True)
def do_dir(self, args, unknown):

"""List contents of current directory."""
No arguments for this command
if unknown:

self.perror("dir does not take any positional arguments:")
self.do_help('dir')
self.last_result = CommandResult('', 'Bad arguments')
return

Get the contents as a list
contents = os.listdir(self.cwd)

...

Using A Custom Namespace

In some cases, it may be necessary to write custom argparse code that is dependent on state data of your
application. To support this ability while still allowing use of the decorators, both @with_argparser and
@with_argparser_and_unknown_args have an optional argument called ns_provider.

ns_provider is a Callable that accepts a cmd2.Cmd object as an argument and returns an argparse.
Namespace:

3.1. Features 23

cmd2 Documentation, Release 1.3

Callable[[cmd2.Cmd], argparse.Namespace]

For example:

def settings_ns_provider(self) -> argparse.Namespace:
"""Populate an argparse Namespace with current settings"""
ns = argparse.Namespace()
ns.app_settings = self.settings
return ns

To use this function with the argparse decorators, do the following:

@with_argparser(my_parser, ns_provider=settings_ns_provider)

The Namespace is passed by the decorators to the argparse parsing functions which gives your custom code access
to the state data it needs for its parsing logic.

Subcommands

Subcommands are supported for commands using either the @with_argparser or
@with_argparser_and_unknown_args decorator. The syntax for supporting them is based on argparse
sub-parsers.

You may add multiple layers of subcommands for your command. cmd2 will automatically traverse and tab complete
subcommands for all commands using argparse.

See the subcommands example to learn more about how to use subcommands in your cmd2 application.

Argparse Extensions

cmd2 augments the standard argparse.nargs with range tuple capability:

• nargs=(5,) - accept 5 or more items

• nargs=(8, 12) - accept 8 to 12 items

cmd2 also provides the cmd2.argparse_custom.Cmd2ArgumentParser class which inherits from
argparse.ArgumentParser and improves error and help output.

Decorator Order

If you are using custom decorators in combination with either @cmd2.with_argparser or @cmd2.
with_argparser_and_unknown_args, then the order of your custom decorator(s) relative to the cmd2 deco-
rator matters when it comes to runtime behavior and argparse errors. There is nothing cmd2-specific here, this is
just a side-effect of how decorators work in Python. To learn more about how decorators work, see decorator_primer.

If you want your custom decorator’s runtime behavior to occur in the case of an argparse error, then that decorator
needs to go after the argparse one, e.g.:

@cmd2.with_argparser(foo_parser)
@my_decorator
def do_foo(self, args: argparse.Namespace) -> None:

"""foo docs"""
pass

24 Chapter 3. Features

https://github.com/python-cmd2/cmd2/blob/master/examples/subcommands.py
https://realpython.com/primer-on-python-decorators

cmd2 Documentation, Release 1.3

However, if you do NOT want the custom decorator runtime behavior to occur even in the case of an argparse error,
then that decorator needs to go before the arpgarse one, e.g.:

@my_decorator
@cmd2.with_argparser(bar_parser)
def do_bar(self, args: argparse.Namespace) -> None:

"""bar docs"""
pass

The help_categories example demonstrates both above cases in a concrete fashion.

Reserved Argument Names

cmd2 argparse decorators add the following attributes to argparse Namespaces. To avoid naming collisions, do not
use any of the names for your argparse arguments.

• cmd2_statement - cmd2.Cmd2AttributeWrapper object containing cmd2.Statement object that
was created when parsing the command line.

• __statement__ - cmd2.Statement object that was created when parsing the command line. (This is
deprecated and will be removed in 2.0.0.) Use cmd2_statement instead.

• __subcmd_handler__ - used by cmd2 to identify the handler for a subcommand created with @cmd2.
as_subcommand_to decorator.

• cmd2_handler - cmd2.Cmd2AttributeWrapper object containing a subcommand handler function or
None if one was not set.

3.1.2 Builtin Commands

Applications which subclass cmd2.Cmd inherit a number of commands which may be useful to your users. Develop-
ers can Remove Builtin Commands if they do not want them to be part of the application.

List of Builtin Commands

alias

This command manages aliases via subcommands create, delete, and list. See Aliases for more information.

edit

This command launches an editor program and instructs it to open the given file name. Here’s an example:

(Cmd) edit ~/.ssh/config

The program to be launched is determined by the value of the editor setting.

help

This command lists available commands or provides detailed help for a specific command. When called with the
-v/--verbose argument, it shows a brief description of each command. See Help for more information.

3.1. Features 25

https://github.com/python-cmd2/cmd2/blob/master/examples/help_categories.py

cmd2 Documentation, Release 1.3

history

This command allows you to view, run, edit, save, or clear previously entered commands from the history. See History
for more information.

ipy

This optional opt-in command enters an interactive IPython shell. See IPython (optional) for more information.

macro

This command manages macros via subcommands create, delete, and list. A macro is similar to an alias, but
it can contain argument placeholders. See Macros for more information.

py

This command invokes a Python command or shell. See Embedded Python Shells for more information.

quit

This command exits the cmd2 application.

run_pyscript

This command runs a Python script file inside the cmd2 application. See Python Scripts for more information.

run_script

This command runs commands in a script file that is encoded as either ASCII or UTF-8 text. See Command Scripts
for more information.

_relative_run_script

This command is hidden from the help that’s visible to end users. It runs a script like run_script but does so using a
path relative to the script that is currently executing. This is useful when you have scripts that run other scripts. See
Running Command Scripts for more information.

set

A list of all user-settable parameters, with brief comments, is viewable from within a running application:

(Cmd) set --verbose
allow_style: 'Terminal' # Allow ANSI text style sequences in output (valid values:
→˓Terminal, Always, Never)
always_show_hint: False # Display tab completion hint even when completion
→˓suggestions print

(continues on next page)

26 Chapter 3. Features

cmd2 Documentation, Release 1.3

(continued from previous page)

debug: True # Show full traceback on exception
echo: False # Echo command issued into output
editor: 'vi' # Program used by 'edit'
feedback_to_output: False # Include nonessentials in '|', '>' results
max_completion_items: 50 # Maximum number of CompletionItems to display during tab
→˓completion
quiet: False # Don't print nonessential feedback
timing: False # Report execution times

Any of these user-settable parameters can be set while running your app with the set command like so:

(Cmd) set allow_style Never

See Settings for more information.

shell

Execute a command as if at the operating system shell prompt:

(Cmd) shell pwd -P
/usr/local/bin

shortcuts

This command lists available shortcuts. See Shortcuts for more information.

Remove Builtin Commands

Developers may not want to offer the commands builtin to cmd2.Cmd to users of their application. To remove a
command you must delete the method implementing that command from the cmd2.Cmd object at runtime. For
example, if you wanted to remove the shell command from your application:

class NoShellApp(cmd2.Cmd):
"""A simple cmd2 application."""

delattr(cmd2.Cmd, 'do_shell')

3.1.3 Clipboard Integration

Nearly every operating system has some notion of a short-term storage area which can be accessed by any program.
Usually this is called the clipboard, but sometimes people refer to it as the paste buffer.

cmd2 integrates with the operating system clipboard using the pyperclip module. Command output can be sent to the
clipboard by ending the command with a greater than symbol:

mycommand args >

Think of it as though you are redirecting output to an unnamed, ephemeral place, you know, like the clipboard. You
can also append output to the current contents of the clipboard by ending the command with two greater than symbols:

3.1. Features 27

https://github.com/asweigart/pyperclip

cmd2 Documentation, Release 1.3

mycommand arg1 arg2 >>

Developers

If you would like your cmd2 based application to be able to use the clipboard in additional or alternative ways, you
can use the following methods (which work uniformly on Windows, macOS, and Linux).

This module provides basic ability to copy from and paste to the clipboard/pastebuffer.

cmd2.clipboard.get_paste_buffer()→ str
Get the contents of the clipboard / paste buffer.

Returns contents of the clipboard

cmd2.clipboard.write_to_paste_buffer(txt: str)→ None
Copy text to the clipboard / paste buffer.

Parameters txt – text to copy to the clipboard

3.1.4 Commands

cmd2 is designed to make it easy for you to create new commands. These commmands form the backbone of your
application. If you started writing your application using cmd, all the commands you have built will work when you
move to cmd2. However, there are many more capabilities available in cmd2 which you can take advantage of to add
more robust features to your commands, and which makes your commands easier to write. Before we get to all the
good stuff, let’s briefly discuss how to create a new command in your application.

Basic Commands

The simplest cmd2 application looks like this:

#!/usr/bin/env python
"""A simple cmd2 application."""
import cmd2

class App(cmd2.Cmd):
"""A simple cmd2 application."""

if __name__ == '__main__':
import sys
c = App()
sys.exit(c.cmdloop())

This application subclasses cmd2.Cmd but has no code of it’s own, so all functionality (and there’s quite a bit) is
inherited. Lets create a simple command in this application called echo which outputs any arguments given to it.
Add this method to the class:

def do_echo(self, line):
self.poutput(line)

When you type input into the cmd2 prompt, the first space delimited word is treated as the command name. cmd2
looks for a method called do_commandname. If it exists, it calls the method, passing the rest of the user input as the
first argument. If it doesn’t exist cmd2 prints an error message. As a result of this behavior, the only thing you have

28 Chapter 3. Features

https://docs.python.org/3/library/cmd.html

cmd2 Documentation, Release 1.3

to do to create a new command is to define a new method in the class with the appropriate name. This is exactly how
you would create a command using the cmd module which is part of the python standard library.

Note: See Generating Output if you are unfamiliar with the poutput() method.

Statements

A command is passed one argument: a string which contains all the rest of the user input. However, in cmd2 this
string is actually a Statement object, which is a subclass of str to retain backwards compatibility.

cmd2 has a much more sophsticated parsing engine than what’s included in the cmd module. This parsing handles:

• quoted arguments

• output redirection and piping

• multi-line commands

• shortcut, macro, and alias expansion

In addition to parsing all of these elements from the user input, cmd2 also has code to make all of these items work;
it’s almost transparent to you and to the commands you write in your own application. However, by passing your
command the Statement object instead of just a plain string, you can get visibility into what cmd2 has done with
the user input before your command got it. You can also avoid writing a bunch of parsing code, because cmd2 gives
you access to what it has already parsed.

A Statement object is a subclass of str that contains the following attributes:

command Name of the command called. You already know this because of the method cmd2 called, but it can
sometimes be nice to have it in a string, i.e. if you want your error messages to contain the command name.

args A string containing the arguments to the command with output redirection or piping to shell commands removed.
It turns out that the “string” value of the Statement object has all the output redirection and piping clauses
removed as well. Quotes remain in the string.

command_and_args A string of just the command and the arguments, with output redirection or piping to shell
commands removed.

argv A list of arguments a-la sys.argv, including the command as argv[0] and the subsequent arguments as
additional items in the list. Quotes around arguments will be stripped as will any output redirection or piping
portions of the command.

raw Full input exactly as typed by the user.

terminator Character used to end a multiline command. You can configure multiple termination characters, and this
attribute will tell you which one the user typed.

For many simple commands, like the echo command above, you can ignore the Statement object and all of it’s
attributes and just use the passed value as a string. You might choose to use the argv attribute to do more sophis-
ticated argument processing. Before you go too far down that path, you should check out the Argument Processing
functionality included with cmd2.

Return Values

Most commands should return nothing (either by omitting a return statement, or by return None. This indicates
that your command is finished (with or without errors), and that cmd2 should prompt the user for more input.

3.1. Features 29

https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html

cmd2 Documentation, Release 1.3

If you return True from a command method, that indicates to cmd2 that it should stop prompting for user input and
cleanly exit. cmd2 already includes a quit command, but if you wanted to make another one called finis you
could:

def do_finish(self, line):
"""Exit the application"""
return True

Exit Codes

cmd2 has basic infrastructure to support sh/ksh/csh/bash type exit codes. The cmd2.Cmd object sets an exit_code
attribute to zero when it is instantiated. The value of this attribute is returned from the cmdloop() call. Therefore,
if you don’t do anything with this attribute in your code, cmdloop() will (almost) always return zero. There are a
few built-in cmd2 commands which set exit_code to -1 if an error occurs.

You can use this capability to easily return your own values to the operating system shell:

#!/usr/bin/env python
"""A simple cmd2 application."""
import cmd2

class App(cmd2.Cmd):
"""A simple cmd2 application."""

def do_bail(self, line):
"""Exit the application""
self.perror("fatal error, exiting")
self.exit_code = 2
return true

if __name__ == '__main__':
import sys
c = App()
sys.exit(c.cmdloop())

If the app was run from the bash operating system shell, then you would see the following interaction:

(Cmd) bail
fatal error, exiting
$ echo $?
2

Exception Handling

You may choose to catch and handle any exceptions which occur in a command method. If the command method raises
an exception, cmd2 will catch it and display it for you. The debug setting controls how the exception is displayed. If
debug is false, which is the default, cmd2 will display the exception name and message. If debug is true, cmd2 will
display a traceback, and then display the exception name and message.

There are a few exceptions which commands can raise that do not print as described above:

• cmd2.exceptions.SkipPostcommandHooks - all postcommand hooks are skipped and no exception
prints

• cmd2.exceptions.Cmd2ArgparseError - behaves like SkipPostcommandHooks

30 Chapter 3. Features

cmd2 Documentation, Release 1.3

• SystemExit - stop will be set to True in an attempt to stop the command loop

• KeyboardInterrupt - raised if running in a text script and stop isn’t already True to stop the script

All other BaseExceptions are not caught by cmd2 and will be raised

Disabling or Hiding Commands

See Disabling Commands for details of how to:

• remove commands included in cmd2

• hide commands from the help menu

• disable and re-enable commands at runtime

Modular Commands and Loading/Unloading Commands

See Modular Commands for details of how to:

• Define commands in separate CommandSet modules

• Load or unload commands at runtime

3.1.5 Completion

cmd2.Cmd adds tab completion of file system paths for all built-in commands where it makes sense, including:

• edit

• run_pyscript

• run_script

• shell

cmd2.Cmd also adds tab completion of shell commands to the shell command.

It is easy to add identical file system path completion to your own custom commands. Suppose you have defined a
custom command foo by implementing the do_foo method. To enable path completion for the foo command, then
add a line of code similar to the following to your class which inherits from cmd2.Cmd:

complete_foo = cmd2.Cmd.path_complete

This will effectively define the complete_foo readline completer method in your class and make it utilize the same
path completion logic as the built-in commands.

The built-in logic allows for a few more advanced path completion capabilities, such as cases where you only want to
match directories. Suppose you have a custom command bar implemented by the do_bar method. You can enable
path completion of directories only for this command by adding a line of code similar to the following to your class
which inherits from cmd2.Cmd:

Make sure you have an "import functools" somewhere at the top
complete_bar = functools.partialmethod(cmd2.Cmd.path_complete, path_filter=os.path.
→˓isdir)

3.1. Features 31

cmd2 Documentation, Release 1.3

Included Tab Completion Functions

cmd2 provides the following tab completion functions

• cmd2.utils.basic_complete - helper method for tab completion against a list

• cmd2.Cmd.path_complete - helper method provides flexible tab completion of file system paths

– See the paged_output example for a simple use case

– See the python_scripting example for a more full-featured use case

• cmd2.Cmd.delimiter_complete - helper method for tab completion against a list but each match is split
on a delimiter

– See the basic_completion example for a demonstration of how to use this feature

• cmd2.Cmd.flag_based_complete - helper method for tab completion based on a particular flag preced-
ing the token being completed

• cmd2.Cmd.index_based_complete - helper method for tab completion based on a fixed position in the
input string

– See the basic_completion example for a demonstration of how to use these features

– flag_based_complete() and index_based_complete() are basic methods and should only
be used if you are not familiar with argparse. The recommended approach for tab completing positional
tokens and flags is to use argparse-based completion.

Raising Exceptions During Completion

There are times when an error occurs while tab completing and a message needs to be reported to the user. These
include the following example cases:

• Reading a database to retrieve a tab completion data set failed

• A previous command line argument that determines the data set being completed is invalid

• Tab completion hints

cmd2 provides the cmd2.utils.CompletionError exception class for this capability. If an error occurs in
which it is more desirable to display a message than a stack trace, then raise a CompletionError. By default, the
message displays in red like an error. However, CompletionError has a member called apply_style. Set this
False if the error style should not be applied. For instance, ArgparseCompleter sets it to False when displaying
completion hints.

Tab Completion Using argparse Decorators

When using one the argparse-based cmd2.decorators, cmd2 provides automatic tab completion of flag names.

Tab completion of argument values can be configured by using one of five parameters to argparse.
ArgumentParser.add_argument()

• choices

• choices_function or choices_method

• completer_function or completer_method

See the arg_decorators or colors example for a demonstration of how to use the choices parameter. See the arg-
parse_completion example for a demonstration of how to use the choices_function and choices_method

32 Chapter 3. Features

https://github.com/python-cmd2/cmd2/blob/master/examples/paged_output.py
https://github.com/python-cmd2/cmd2/blob/master/examples/python_scripting.py
https://github.com/python-cmd2/cmd2/blob/master/examples/basic_completion.py
https://github.com/python-cmd2/cmd2/blob/master/examples/basic_completion.py
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://github.com/python-cmd2/cmd2/blob/master/examples/arg_decorators.py
https://github.com/python-cmd2/cmd2/blob/master/examples/colors.py
https://github.com/python-cmd2/cmd2/blob/master/examples/argparse_completion.py
https://github.com/python-cmd2/cmd2/blob/master/examples/argparse_completion.py

cmd2 Documentation, Release 1.3

parameters. See the arg_decorators or argparse_completion example for a demonstration of how to use the
completer_method parameter.

When tab completing flags or argument values for a cmd2 command using one of these decorators, cmd2 keeps track
of state so that once a flag has already previously been provided, it won’t attempt to tab complete it again. When no
completion results exists, a hint for the current argument will be displayed to help the user.

CompletionItem For Providing Extra Context

When tab completing things like a unique ID from a database, it can often be beneficial to provide the user with
some extra context about the item being completed, such as a description. To facilitate this, cmd2 defines the cmd2.
argparse_custom.CompletionItem class which can be returned from any of the 4 completion functions:
choices_function, choices_method, completion_function, or completion_method.

See the argparse_completion example or the implementation of the built-in do_set() command for demonstration
of how this is used.

For More Information

See cmd2.argparse_custom for a more detailed discussion of argparse completion.

3.1.6 Disabling Commands

cmd2 allows a developer to:

• remove commands included in cmd2

• prevent commands from appearing in the help menu (hide commands)

• disable and re-enable commands at runtime

Remove A Command

When a command has been removed, the command method has been deleted from the object. The command doesn’t
show up in help, and it can’t be executed. This approach is appropriate if you never want a built-in command to be
part of your application. Delete the command method in your initialization code:

class RemoveBuiltinCommand(cmd2.Cmd):
"""An app which removes a built-in command from cmd2"""

def __init__(self):
super().__init__()
To remove built-in commands entirely, delete
the "do_*" function from the cmd2.Cmd class
del cmd2.Cmd.do_edit

Hide A Command

When a command is hidden, it won’t show up in the help menu, but if the user knows it’s there and types the command,
it will be executed. You hide a command by adding it to the hidden_commands list:

3.1. Features 33

https://github.com/python-cmd2/cmd2/blob/master/examples/arg_decorators.py
https://github.com/python-cmd2/cmd2/blob/master/examples/argparse_completion.py
https://github.com/python-cmd2/cmd2/blob/master/examples/argparse_completion.py

cmd2 Documentation, Release 1.3

class HiddenCommands(cmd2.Cmd):
""An app which demonstrates how to hide a command"""
def __init__(self):

super().__init__()
self.hidden_commands.append('py')

As shown above, you would typically do this as part of initializing your application. If you decide you want to unhide
a command later in the execution of your application, you can by doing:

self.hidden_commands = [cmd for cmd in self.hidden_commands if cmd != 'py']

You might be thinking that the list comprehension is overkill and you’d rather do something like:

self.hidden_commands.remove('py')

You may be right, but remove() will raise a ValueError if py isn’t in the list, and it will only remove the first
one if it’s in the list multiple times.

Disable A Command

One way to disable a command is to add code to the command method which determines whether the command should
be executed or not. If the command should not be executed, your code can print an appropriate error message and
return.

cmd2 also provides another way to accomplish the same thing. Here’s a simple app which disables the open command
if the door is locked:

class DisabledCommands(cmd2.Cmd):
"""An application which disables and enables commands"""

def do_lock(self, line):
self.disable_command('open', "you can't open the door because it is locked")
self.poutput('the door is locked')

def do_unlock(self, line):
self.enable_command('open')
self.poutput('the door is unlocked')

def do_open(self, line):
"""open the door"""
self.poutput('opening the door')

This method has the added benefit of removing disabled commands from the help menu. But, this method only works
if you know in advance that the command should be disabled, and if the conditions for re-enabling it are likewise
known in advance.

Disable A Category of Commands

You can group or categorize commands as shown in Categorizing Commands. If you do so, you can disable and
enable all the commands in a category with a single method call. Say you have created a category of commands called
“Server Information”. You can disable all commands in that category:

not_connected_msg = 'You must be connected to use this command'
self.disable_category('Server Information', not_connected_msg)

34 Chapter 3. Features

cmd2 Documentation, Release 1.3

Similarly, you can re-enable all the commands in a category:

self.enable_category('Server Information')

3.1.7 Embedded Python Shells

The py command will run its arguments as a Python command. Entered without arguments, it enters an in-
teractive Python session. The session can call “back” to your application through the name defined in self.
pyscript_name (defaults to app). This wrapper provides access to execute commands in your cmd2 application
while maintaining isolation.

You may optionally enable full access to to your application by setting self_in_py to True. Enabling this flag
adds self to the python session, which is a reference to your cmd2 application. This can be useful for debugging
your application.

The app object (or your custom name) provides access to application commands through raw commands. For exam-
ple, any application command call be called with app("<command>").

>>> app('say --piglatin Blah')
lahBay

More Python examples:

(Cmd) py print("-".join("spelling"))
s-p-e-l-l-i-n-g
(Cmd) py
Python 3.5.3 (default, Jan 19 2017, 14:11:04)
[GCC 6.3.0 20170118] on linux
Type "help", "copyright", "credits" or "license" for more information.
(CmdLineApp)

End with `Ctrl-D` (Unix) / `Ctrl-Z` (Windows), `quit()`, `exit()`.
Non-python commands can be issued with: app("your command")
Run python code from external script files with: run("script.py")

>>> import os
>>> os.uname()
('Linux', 'eee', '2.6.31-19-generic', '#56-Ubuntu SMP Thu Jan 28 01:26:53 UTC 2010',
→˓'i686')
>>> app("say --piglatin {os}".format(os=os.uname()[0]))
inuxLay
>>> self.prompt
'(Cmd) '
>>> self.prompt = 'Python was here > '
>>> quit()
Python was here >

Using the py command is tightly integrated with your main cmd2 application and any variables created or changed
will persist for the life of the application:

(Cmd) py x = 5
(Cmd) py print(x)
5

The py command also allows you to run Python scripts via py run('myscript.py'). This provides a more
complicated and more powerful scripting capability than that provided by the simple text file scripts discussed in
Scripting. Python scripts can include conditional control flow logic. See the python_scripting.py cmd2 application

3.1. Features 35

cmd2 Documentation, Release 1.3

and the script_conditional.py script in the examples source code directory for an example of how to achieve this
in your own applications.

Using py to run scripts directly is considered deprecated. The newer run_pyscript command is superior for doing
this in two primary ways:

• it supports tab completion of file system paths

• it has the ability to pass command-line arguments to the scripts invoked

There are no disadvantages to using run_pyscript as opposed to py run(). A simple example of using
run_pyscript is shown below along with the arg_printer script:

(Cmd) run_pyscript examples/scripts/arg_printer.py foo bar baz
Running Python script 'arg_printer.py' which was called with 3 arguments
arg 1: 'foo'
arg 2: 'bar'
arg 3: 'baz'

Note: If you want to be able to pass arguments with spaces to commands, then we strongly recommend using one
of the decorators, such as with_argument_list. cmd2 will pass your do_* methods a list of arguments in this
case.

When using this decorator, you can then put arguments in quotes like so:

$ examples/arg_print.py
(Cmd) lprint foo "bar baz"
lprint was called with the following list of arguments: ['foo', 'bar baz']

IPython (optional)

If IPython is installed on the system and the cmd2.Cmd class is instantiated with use_ipython=True, then the
optional ipy command will be present:

from cmd2 import Cmd
class App(Cmd):

def __init__(self):
Cmd.__init__(self, use_ipython=True)

The ipy command enters an interactive IPython session. Similar to an interactive Python session, this shell can access
your application instance via self and any changes to your application made via self will persist. However, any
local or global variable created within the ipy shell will not persist. Within the ipy shell, you cannot call “back” to
your application with cmd(""), however you can run commands directly like so:

self.onecmd_plus_hooks('help')

IPython provides many advantages, including:

• Comprehensive object introspection

• Get help on objects with ?

• Extensible tab completion, with support by default for completion of python variables and keywords

• Good built-in ipdb debugger

The object introspection and tab completion make IPython particularly efficient for debugging as well as for interactive
experimentation and data analysis.

36 Chapter 3. Features

https://github.com/python-cmd2/cmd2/blob/master/examples/scripts/arg_printer.py
http://ipython.readthedocs.io
http://ipython.readthedocs.io
http://ipython.readthedocs.io
https://pypi.org/project/ipdb/

cmd2 Documentation, Release 1.3

3.1.8 Generating Output

A standard cmd application can produce output by using either of these methods:

print("Greetings, Professor Falken.", file=self.stdout)
self.stdout.write("Shall we play a game?\n")

While you could send output directly to sys.stdout, cmd2.Cmd can be initialized with a stdin and stdout
variables, which it stores as self.stdin and self.stdout. By using these variables every time you produce
output, you can trivially change where all the output goes by changing how you initialize your class.

cmd2.Cmd extends this approach in a number of convenient ways. See Output Redirection and Pipes for information
on how users can change where the output of a command is sent. In order for those features to work, the output
you generate must be sent to self.stdout. You can use the methods described above, and everything will work
fine. cmd2.Cmd also includes a number of output related methods which you may use to enhance the output your
application produces.

Ordinary Output

The poutput() method is similar to the Python built-in print function. poutput() adds two conveniences:

1. Since users can pipe output to a shell command, it catches BrokenPipeError and outputs the con-
tents of self.broken_pipe_warning to stderr. self.broken_pipe_warning defaults to
an empty string so this method will just swallow the exception. If you want to show an error message, put
it in self.broken_pipe_warning when you initialize Cmd.

2. It examines and honors the allow_style setting. See Colored Output below for more details.

Here’s a simple command that shows this method in action:

def do_echo(self, args):
"""A simple command showing how poutput() works"""
self.poutput(args)

Error Messages

When an error occurs in your program, you can display it on sys.stderr by calling the perror() method. By
default this method applies cmd2.ansi.style_error() to the output.

Warning Messages

pwarning() is just like perror() but applies cmd2.ansi.style_warning() to the output.

Feedback

You may have the need to display information to the user which is not intended to be part of the generated output. This
could be debugging information or status information about the progress of long running commands. It’s not output,
it’s not error messages, it’s feedback. If you use the timing setting, the output of how long it took the command to
run will be output as feedback. You can use the pfeedback() method to produce this type of output, and several
Settings control how it is handled.

If the quiet setting is True, then calling pfeedback() produces no output. If quiet is False, the feed-
back_to_output setting is consulted to determine whether to send the output to stdout or stderr.

3.1. Features 37

https://docs.python.org/3/library/functions.html#print

cmd2 Documentation, Release 1.3

Exceptions

If your app catches an exception and you would like to display the exception to the user, the pexcept() method can
help. The default behavior is to just display the message contained within the exception. However, if the debug setting
is True, then the entire stack trace will be displayed.

Paging Output

If you know you are going to generate a lot of output, you may want to display it in a way that the user can scroll
forwards and backwards through it. If you pass all of the output to be displayed in a single call to ppaged(), it will
be piped to an operating system appropriate shell command to page the output. On Windows, the output is piped to
more; on Unix-like operating systems like MacOS and Linux, it is piped to less.

Colored Output

You can add your own ANSI escape sequences to your output which tell the terminal to change the foreground and
background colors. If you want to give yourself a headache, you can generate these by hand. You could also use a
Python color library like plumbum.colors, colored, or colorama. Colorama is unique because when it’s running on
Windows, it wraps stdout, looks for ANSI escape sequences, and converts them into the appropriate win32 calls
to modify the state of the terminal.

cmd2 imports and uses Colorama and provides a number of convenience methods for generating colorized output,
measuring the screen width of colorized output, setting the window title in the terminal, and removing ANSI text style
escape codes from a string. These functions are all documentated in cmd2.ansi.

After adding the desired escape sequences to your output, you should use one of these methods to present the output
to the user:

• cmd2.Cmd.poutput()

• cmd2.Cmd.perror()

• cmd2.Cmd.pwarning()

• cmd2.Cmd.pexcept()

• cmd2.Cmd.pfeedback()

• cmd2.Cmd.ppaged()

These methods all honor the allow_style setting, which users can modify to control whether these escape codes are
passed through to the terminal or not.

Aligning Text

If you would like to generate output which is left, center, or right aligned within a specified width or the terminal
width, the following functions can help:

• cmd2.utils.align_left()

• cmd2.utils.align_center()

• cmd2.utils.align_right()

These functions differ from Python’s string justifying functions in that they support characters with display widths
greater than 1. Additionally, ANSI style sequences are safely ignored and do not count toward the display width. This
means colored text is supported. If text has line breaks, then each line is aligned independently.

38 Chapter 3. Features

https://en.wikipedia.org/wiki/ANSI_escape_code#Colors
https://plumbum.readthedocs.io/en/latest/colors.html
https://gitlab.com/dslackw/colored
https://github.com/tartley/colorama

cmd2 Documentation, Release 1.3

Columnar Output

When generating output in multiple columns, you often need to calculate the width of each item so you can pad it
appropriately with spaces. However, there are categories of Unicode characters that occupy 2 cells, and other that
occupy 0. To further complicate matters, you might have included ANSI escape sequences in the output to generate
colors on the terminal.

The cmd2.ansi.style_aware_wcswidth() function solves both of these problems. Pass it a string, and
regardless of which Unicode characters and ANSI text style escape sequences it contains, it will tell you how many
characters on the screen that string will consume when printed.

3.1.9 Help

From our experience, end users rarely read documentation no matter how high- quality or useful that documentation
might be. So it is important that you provide good built-in help within your application. Fortunately, cmd2 makes this
easy.

Getting Help

cmd2 makes it easy for end users of cmd2 applications to get help via the built-in help command. The help
command by itself displays a list of the commands available:

(Cmd) help

Documented commands (use 'help -v' for verbose/'help <topic>' for details):
===
alias help ipy py run_pyscript set shortcuts
edit history macro quit run_script shell

The help command can also be used to provide detailed help for a specific command:

(Cmd) help quit
Usage: quit [-h]

Exit this application

optional arguments:
-h, --help show this help message and exit

Providing Help

cmd2 makes it easy for developers of cmd2 applications to provide this help. By default, the help for a command is
the docstring for the do_* method defining the command - e.g. for a command foo, that command is implementd by
defining the do_foo method and the docstring for that method is the help.

For commands which use one of the argparse decorators to parse arguments, help is provided by argparse. See
Help Messages for more information.

Occasionally there might be an unusual circumstance where providing static help text isn’t good enough and you want
to provide dynamic information in the help text for a command. To meet this need, if a help_foo method is defined
to match the do_foo method, then that method will be used to provide the help for command foo. This dynamic help
is only supported for commands which do not use an argparse decorator because didn’t want different output for
help cmd than for cmd -h.

3.1. Features 39

cmd2 Documentation, Release 1.3

Categorizing Commands

By default, the help command displays:

Documented commands (use 'help -v' for verbose/'help <topic>' for details):
===
alias help ipy py run_pyscript set shortcuts
edit history macro quit run_script shell

If you have a large number of commands, you can optionally group your commands into categories. Here’s the output
from the example help_categories.py:

Documented commands (use 'help -v' for verbose/'help <topic>' for details):

Application Management
======================
deploy findleakers redeploy sessions stop
expire list restart start undeploy

Command Management
==================
disable_commands enable_commands

Connecting
==========
connect which

Server Information
==================
resources serverinfo sslconnectorciphers status thread_dump vminfo

Other
=====
alias edit history py run_pyscript set shortcuts
config help macro quit run_script shell version

There are 2 methods of specifying command categories, using the @with_category decorator or with the
categorize() function. Once a single command category is detected, the help output switches to a categorized
mode of display. All commands with an explicit category defined default to the category Other.

Using the @with_category decorator:

@with_category(CMD_CAT_CONNECTING)
def do_which(self, _):

"""Which command"""
self.poutput('Which')

Using the categorize() function:

You can call with a single function:

def do_connect(self, _):
"""Connect command"""
self.poutput('Connect')

Tag the above command functions under the category Connecting
categorize(do_connect, CMD_CAT_CONNECTING)

Or with an Iterable container of functions:

40 Chapter 3. Features

cmd2 Documentation, Release 1.3

def do_undeploy(self, _):
"""Undeploy command"""
self.poutput('Undeploy')

def do_stop(self, _):
"""Stop command"""
self.poutput('Stop')

def do_findleakers(self, _):
"""Find Leakers command"""
self.poutput('Find Leakers')

Tag the above command functions under the category Application Management
categorize((do_undeploy,

do_stop,
do_findleakers), CMD_CAT_APP_MGMT)

The help command also has a verbose option (help -v or help --verbose) that combines the help categories
with per-command Help Messages:

Documented commands (use 'help -v' for verbose/'help <topic>' for details):

Application Management
==
deploy Deploy command
expire Expire command
findleakers Find Leakers command
list List command
redeploy Redeploy command
restart usage: restart [-h] {now,later,sometime,whenever}
sessions Sessions command
start Start command
stop Stop command
undeploy Undeploy command

Connecting
==
connect Connect command
which Which command

Server Information
==
resources Resources command
serverinfo Server Info command
sslconnectorciphers SSL Connector Ciphers command is an example of a command that
→˓contains

multiple lines of help information for the user. Each line of
→˓help in a

contiguous set of lines will be printed and aligned in the
→˓verbose output

provided with 'help --verbose'
status Status command
thread_dump Thread Dump command
vminfo VM Info command

Other
==

(continues on next page)

3.1. Features 41

cmd2 Documentation, Release 1.3

(continued from previous page)

alias Manage aliases
config Config command
edit Run a text editor and optionally open a file with it
help List available commands or provide detailed help for a specific
→˓command
history View, run, edit, save, or clear previously entered commands
macro Manage macros
py Invoke Python command or shell
quit Exits this application
run_pyscript Runs a python script file inside the console
run_script Runs commands in script file that is encoded as either ASCII or
→˓UTF-8 text
set Set a settable parameter or show current settings of parameters
shell Execute a command as if at the OS prompt
shortcuts List available shortcuts
version Version command

When called with the -v flag for verbose help, the one-line description for each command is provided by the first line
of the docstring for that command’s associated do_* method.

3.1.10 History

For Developers

The cmd module from the Python standard library includes readline history.

cmd2.Cmd offers the same readline capabilities, but also maintains it’s own data structures for the history of all
commands entered by the user. When the class is initialized, it creates an instance of the cmd2.history.History
class (which is a subclass of list) as cmd2.Cmd.history .

Each time a command is executed (this gets complex, see Command Processing Loop for exactly when) the parsed
cmd2.Statement is appended to cmd2.Cmd.history .

cmd2 adds the option of making this history persistent via optional arguments to cmd2.Cmd.__init__(). If you
pass a filename in the persistent_history_file argument, the contents of cmd2.Cmd.history will be
pickled into that history file. We chose to use pickle instead of plain text so that we can save the results of parsing all
the commands.

Note: readline saves everything you type, whether it is a valid command or not. cmd2 only saves input to internal
history if the command parses successfully and is a valid command. This design choice was intentional, because the
contents of history can be saved to a file as a script, or can be re-run. Not saving invalid input reduces unintentional
errors when doing so.

However, this design choice causes an inconsistency between the readline history and the cmd2 history when you
enter an invalid command: it is saved to the readline history, but not to the cmd2 history.

The cmd2.Cmd.history attribute, the cmd2.history.History class, and the cmd2.history.
HistoryItem class are all part of the public API for cmd2.Cmd. You could use these classes to implement write
your own history command (see below for documentation on how the included history command works). If
you don’t like pickled history, you could implement your own mechanism for saving and loading history from a plain
text file.

42 Chapter 3. Features

cmd2 Documentation, Release 1.3

For Users

You can use the up and down arrow keys to move through the history of previously entered commands.

If the readline module is installed, you can press Control-p to move to the previously entered command, and
Control-n to move to the next command. You can also search through the command history using Control-r.

Eric Johnson hosts a nice readline cheat sheet, or you can dig into the GNU Readline User Manual for all the details,
including instructions for customizing the key bindings.

cmd2 makes a third type of history access available with the history command. Each time the user enters a
command, cmd2 saves the input. The history command lets you do interesting things with that saved input. The
examples to follow all assume that you have entered the following commands:

(Cmd) alias create one !echo one
Alias 'one' created
(Cmd) alias create two !echo two
Alias 'two' created
(Cmd) alias create three !echo three
Alias 'three' created
(Cmd) alias create four !echo four
Alias 'four' created

In it’s simplest form, the history command displays previously entered commands. With no additional arguments,
it displays all previously entered commands:

(Cmd) history
1 alias create one !echo one
2 alias create two !echo two
3 alias create three !echo three
4 alias create four !echo four

If you give a positive integer as an argument, then it only displays the specified command:

(Cmd) history 4
4 alias create four !echo four

If you give a negative integer N as an argument, then it display the Nth last command. For example, if you give -1 it
will display the last command you entered. If you give -2 it will display the next to last command you entered, and
so forth:

(Cmd) history -2
3 alias create three !echo three

You can use a similar mechanism to display a range of commands. Simply give two command numbers separated by
.. or :, and you will see all commands between, and including, those two numbers:

(Cmd) history 1:3
1 alias create one !echo one
2 alias create two !echo two
3 alias create three !echo three

If you omit the first number, it will start at the beginning. If you omit the last number, it will continue to the end:

(Cmd) history :2
1 alias create one !echo one
2 alias create two !echo two

(Cmd) history 2:

(continues on next page)

3.1. Features 43

http://readline.kablamo.org/emacs.html
http://man7.org/linux/man-pages/man3/readline.3.html

cmd2 Documentation, Release 1.3

(continued from previous page)

2 alias create two !echo two
3 alias create three !echo three
4 alias create four !echo four

If you want to display the last three commands entered:

(Cmd) history -- -3:
2 alias create two !echo two
3 alias create three !echo three
4 alias create four !echo four

Notice the double dashes. These are required because the history command uses argparse to parse the command
line arguments. As described in the argparse documentation , -3: is an option, not an argument:

If you have positional arguments that must begin with - and don’t look like negative numbers, you can
insert the pseudo-argument ‘–’ which tells parse_args() that everything after that is a positional argument:

There is no zeroth command, so don’t ask for it. If you are a python programmer, you’ve probably noticed this looks a
lot like the slice syntax for lists and arrays. It is, with the exception that the first history command is 1, where the first
element in a python array is 0.

Besides selecting previous commands by number, you can also search for them. You can use a simple string search:

(Cmd) history two
2 alias create two !echo two

Or a regular expression search by enclosing your regex in slashes:

(Cmd) history '/te\ +th/'
3 alias create three !echo three

If your regular expression contains any characters that argparse finds interesting, like dash or plus, you also need
to enclose your regular expression in quotation marks.

This all sounds great, but doesn’t it seem like a bit of overkill to have all these ways to select commands if all we can
do is display them? Turns out, displaying history commands is just the beginning. The history command can perform
many other actions:

• running previously entered commands

• saving previously entered commands to a text file

• opening previously entered commands in your favorite text editor

• running previously entered commands, saving the commands and their output to a text file

• clearing the history of entered commands

Each of these actions is invoked using a command line option. The -r or --run option runs one or more previously
entered commands. To run command number 1:

(Cmd) history --run 1

To rerun the last two commands (there’s that double dash again to make argparse stop looking for options):

(Cmd) history -r -- -2:

Say you want to re-run some previously entered commands, but you would really like to make a few changes to them
before doing so. When you use the -e or --edit option, history will write the selected commands out to a text

44 Chapter 3. Features

https://docs.python.org/3/library/argparse.html

cmd2 Documentation, Release 1.3

file, and open that file with a text editor. You make whatever changes, additions, or deletions, you want. When you
leave the text editor, all the commands in the file are executed. To edit and then re-run commands 2-4 you would:

(Cmd) history --edit 2:4

If you want to save the commands to a text file, but not edit and re-run them, use the -o or --output-file option.
This is a great way to create Scripts, which can be executed using the run_script command. To save the first 5
commands entered in this session to a text file:

(Cmd) history :5 -o history.txt

The history command can also save both the commands and their output to a text file. This is called a transcript.
See Transcripts for more information on how transcripts work, and what you can use them for. To create a transcript
use the -t or --transcription option:

(Cmd) history 2:3 --transcript transcript.txt

The --transcript option implies --run: the commands must be re-run in order to capture their output to the
transcript file.

The last action the history command can perform is to clear the command history using -c or --clear:

(Cmd) history -c

In addition to these five actions, the history command also has some options to control how the output is formatted.
With no arguments, the history command displays the command number before each command. This is great when
displaying history to the screen because it gives you an easy reference to identify previously entered commands. How-
ever, when creating a script or a transcript, the command numbers would prevent the script from loading properly. The
-s or --script option instructs the history command to suppress the line numbers. This option is automatically
set by the --output_file, --transcript, and --edit options. If you want to output the history commands
with line numbers to a file, you can do it with output redirection:

(Cmd) history 1:4 > history.txt

You might use -s or --script on it’s own if you want to display history commands to the screen without line
numbers, so you can copy them to the clipboard:

(Cmd) history -s 1:3

cmd2 supports both aliases and macros, which allow you to substitute a short, more convenient input string with a
longer replacement string. Say we create an alias like this, and then use it:

(Cmd) alias create ls shell ls -aF
Alias 'ls' created
(Cmd) ls -d h*
history.txt htmlcov/

By default, the history command shows exactly what we typed:

(Cmd) history
1 alias create ls shell ls -aF
2 ls -d h*

There are two ways to modify that display so you can see what aliases and macros were expanded to. The first is to
use -x or --expanded. These options show the expanded command instead of the entered command:

3.1. Features 45

cmd2 Documentation, Release 1.3

(Cmd) history -x
1 alias create ls shell ls -aF
2 shell ls -aF -d h*

If you want to see both the entered command and the expanded command, use the -v or --verbose option:

(Cmd) history -v
1 alias create ls shell ls -aF
2 ls -d h*
2x shell ls -aF -d h*

If the entered command had no expansion, it is displayed as usual. However, if there is some change as the result of
expanding macros and aliases, then the entered command is displayed with the number, and the expanded command
is displayed with the number followed by an x.

3.1.11 Hooks

The typical way of starting a cmd2 application is as follows:

import cmd2
class App(cmd2.Cmd):

customized attributes and methods here

if __name__ == '__main__':
app = App()
app.cmdloop()

There are several pre-existing methods and attributes which you can tweak to control the overall behavior of your
application before, during, and after the command processing loop.

Application Lifecycle Hooks

You can run a script on initialization by passing the script filename in the startup_script parameter of cmd2.
Cmd.__init__().

You can also register methods to be called at the beginning of the command loop:

class App(cmd2.Cmd):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.register_preloop_hook(self.myhookmethod)

def myhookmethod(self) -> None:
self.poutput("before the loop begins")

To retain backwards compatibility with cmd.Cmd, after all registered preloop hooks have been called, the
preloop() method is called.

A similar approach allows you to register functions to be called after the command loop has finished:

class App(cmd2.Cmd):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.register_postloop_hook(self.myhookmethod)

(continues on next page)

46 Chapter 3. Features

cmd2 Documentation, Release 1.3

(continued from previous page)

def myhookmethod(self) -> None:
self.poutput("after the loop ends")

To retain backwards compatibility with cmd.Cmd, after all registered postloop hooks have been called, the
postloop() method is called.

Preloop and postloop hook methods are not passed any parameters and any return value is ignored.

The approach of registering hooks instead of overriding methods allows multiple hooks to be called before the com-
mand loop begins or ends. Plugin authors should review Hooks for best practices writing hooks.

Application Lifecycle Attributes

There are numerous attributes on cmd2.Cmd which affect application behavior upon entering or during the command
loop:

• intro - if provided this serves as the intro banner printed once at start of application, after preloop() is
called.

• prompt - see Prompt for more information.

• continuation_prompt - The prompt issued to solicit input for the 2nd and subsequent lines of a multiline
command

• echo - if True write the prompt and the command into the output stream.

In addition, several arguments to cmd2.Cmd.__init__() also affect the command loop behavior:

• allow_cli_args - allows commands to be specified on the operating system command line which are exe-
cuted before the command processing loop begins.

• transcript_files - see Transcripts for more information

• startup_script - run a script on initialization. See Scripting for more information.

Command Processing Loop

When you call cmd2.Cmd.cmdloop(), the following sequence of events are repeated until the application exits:

1. Output the prompt

2. Accept user input

3. Parse user input into a Statement object

4. Call methods registered with register_postparsing_hook()

5. Redirect output, if user asked for it and it’s allowed

6. Start timer

7. Call methods registered with register_precmd_hook()

8. Call precmd() - for backwards compatibility with cmd.Cmd

9. Add statement to History

10. Call do_command method

11. Call methods registered with register_postcmd_hook()

12. Call postcmd() - for backwards compatibility with cmd.Cmd

3.1. Features 47

cmd2 Documentation, Release 1.3

13. Stop timer and display the elapsed time

14. Stop redirecting output if it was redirected

15. Call methods registered with register_cmdfinalization_hook()

By registering hook methods, steps 4, 8, 12, and 16 allow you to run code during, and control the flow of the command
processing loop. Be aware that plugins also utilize these hooks, so there may be code running that is not part of your
application. Methods registered for a hook are called in the order they were registered. You can register a function
more than once, and it will be called each time it was registered.

Postparsing, precommand, and postcommand hook methods share some common ways to influence the command
processing loop.

If a hook raises an exception:

• no more hooks (except command finalization hooks) of any kind will be called

• if the command has not yet been executed, it will not be executed

• the exception message will be displayed for the user.

Specific types of hook methods have additional options as described below.

Postparsing Hooks

Postparsing hooks are called after the user input has been parsed but before execution of the command. These hooks
can be used to:

• modify the user input

• run code before every command executes

• cancel execution of the current command

• exit the application

When postparsing hooks are called, output has not been redirected, nor has the timer for command execution been
started.

To define and register a postparsing hook, do the following:

class App(cmd2.Cmd):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.register_postparsing_hook(self.myhookmethod)

def myhookmethod(self, params: cmd2.plugin.PostparsingData) -> cmd2.plugin.
→˓PostparsingData:

the statement object created from the user input
is available as params.statement
return params

register_postparsing_hook() checks the method signature of the passed callable, and raises a TypeError
if it has the wrong number of parameters. It will also raise a TypeError if the passed parameter and return value are
not annotated as PostparsingData.

The hook method will be passed one parameter, a PostparsingData object which we will refer to as params.
params contains two attributes. params.statement is a Statement object which describes the parsed user
input. There are many useful attributes in the Statement object, including .raw which contains exactly what the
user typed. params.stop is set to False by default.

48 Chapter 3. Features

cmd2 Documentation, Release 1.3

The hook method must return a cmd2.plugin.PostparsingData object, and it is very convenient to just return
the object passed into the hook method. The hook method may modify the attributes of the object to influece the
behavior of the application. If params.stop is set to true, a fatal failure is triggered prior to execution of the
command, and the application exits.

To modify the user input, you create a new Statement object and return it in params.statement. Don’t try
and directly modify the contents of a Statement object, there be dragons. Instead, use the various attributes in a
Statement object to construct a new string, and then parse that string to create a new Statement object.

cmd2.Cmd uses an instance of StatementParser to parse user input. This instance has been configured with the
proper command terminators, multiline commands, and other parsing related settings. This instance is available as the
statement_parser attribute. Here’s a simple example which shows the proper technique:

def myhookmethod(self, params: cmd2.plugin.PostparsingData) -> cmd2.plugin.
→˓PostparsingData:

if not '|' in params.statement.raw:
newinput = params.statement.raw + ' | less'
params.statement = self.statement_parser.parse(newinput)

return params

If a postparsing hook returns a PostparsingData object with the stop attribute set to True:

• no more hooks of any kind (except Command Finalization Hooks) will be called

• the command will not be executed

• no error message will be displayed to the user

• the application will exit

Precommand Hooks

Precommand hooks can modify the user input, but can not request the application terminate. If your hook needs to be
able to exit the application, you should implement it as a postparsing hook.

Once output is redirected and the timer started, all the hooks registered with register_precmd_hook() are
called. Here’s how to do it:

class App(cmd2.Cmd):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.register_precmd_hook(self.myhookmethod)

def myhookmethod(self, data: cmd2.plugin.PrecommandData) -> cmd2.plugin.
→˓PrecommandData:

the statement object created from the user input
is available as data.statement
return data

register_precmd_hook() checks the method signature of the passed callable, and raises a TypeError if it
has the wrong number of parameters. It will also raise a TypeError if the parameters and return value are not
annotated as PrecommandData.

You may choose to modify the user input by creating a new Statement with different properties (see above). If you
do so, assign your new Statement object to data.statement.

The precommand hook must return a PrecommandData object. You don’t have to create this object from scratch,
you can just return the one passed into the hook.

3.1. Features 49

cmd2 Documentation, Release 1.3

After all registered precommand hooks have been called, precmd() will be called. To retain full backward compat-
ibility with cmd.Cmd, this method is passed a Statement, not a PrecommandData object.

Postcommand Hooks

Once the command method has returned (i.e. the do_command(self, statement) method has been called
and returns, all postcommand hooks are called. If output was redirected by the user, it is still redirected, and the
command timer is still running.

Here’s how to define and register a postcommand hook:

class App(cmd2.Cmd):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.register_postcmd_hook(self.myhookmethod)

def myhookmethod(self, data: cmd2.plugin.PostcommandData) -> cmd2.plugin.
→˓PostcommandData:

return data

Your hook will be passed a PostcommandData object, which has a statement attribute that describes the com-
mand which was executed. If your postcommand hook method gets called, you are guaranteed that the command
method was called, and that it didn’t raise an exception.

If any postcommand hook raises an exception, the exception will be displayed to the user, and no further postcommand
hook methods will be called. Command finalization hooks, if any, will be called.

After all registered postcommand hooks have been called, self.postcmd will be called to retain full backward
compatibility with cmd.Cmd.

If any postcommand hook (registered or self.postcmd) returns a PostcommandData object with the stop at-
tribute set to True, subsequent postcommand hooks will still be called, as will the command finalization hooks, but
once those hooks have all been called, the application will terminate. Likewise, if :self.postcmd returns True,
the command finalization hooks will be called before the application terminates.

Any postcommand hook can change the value of the stop attribute before returning it, and the modified value will
be passed to the next postcommand hook. The value returned by the final postcommand hook will be passed to the
command finalization hooks, which may further modify the value. If your hook blindly returns False, a prior hook’s
requst to exit the application will not be honored. It’s best to return the value you were passed unless you have a
compelling reason to do otherwise.

To purposefully and silently skip postcommand hooks, commands can raise any of of the following exceptions.

• cmd2.exceptions.SkipPostcommandHooks

• cmd2.exceptions.Cmd2ArgparseError

Command Finalization Hooks

Command finalization hooks are called even if one of the other types of hooks or the command method raise an
exception. Here’s how to create and register a command finalization hook:

class App(cmd2.Cmd):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.register_cmdfinalization_hook(self.myhookmethod)

(continues on next page)

50 Chapter 3. Features

cmd2 Documentation, Release 1.3

(continued from previous page)

def myhookmethod(self, data: cmd2.plugin.CommandFinalizationData) -> cmd2.plugin.
→˓CommandFinalizationData:

return data

Command Finalization hooks must check whether the statement attribute of the passed
CommandFinalizationData object contains a value. There are certain circumstances where these hooks
may be called before the user input has been parsed, so you can’t always rely on having a statement.

If any prior postparsing or precommand hook has requested the application to terminate, the value of the stop attribute
passed to the first command finalization hook will be True. Any command finalization hook can change the value of
the stop attribute before returning it, and the modified value will be passed to the next command finalization hook.
The value returned by the final command finalization hook will determine whether the application terminates or not.

This approach to command finalization hooks can be powerful, but it can also cause problems. If your hook blindly
returns False, a prior hook’s requst to exit the application will not be honored. It’s best to return the value you were
passed unless you have a compelling reason to do otherwise.

If any command finalization hook raises an exception, no more command finalization hooks will be called. If the last
hook to return a value returned True, then the exception will be rendered, and the application will terminate.

3.1.12 Initialization

Here is a basic example cmd2 application which demonstrates many capabilities which you may wish to utilize while
initializing the app:

#!/usr/bin/env python3
coding=utf-8
"""A simple example cmd2 application demonstrating the following:

1) Colorizing/stylizing output
2) Using multiline commands
3) Persistent history
4) How to run an initialization script at startup
5) How to group and categorize commands when displaying them in help
6) Opting-in to using the ipy command to run an IPython shell
7) Allowing access to your application in py and ipy
8) Displaying an intro banner upon starting your application
9) Using a custom prompt

10) How to make custom attributes settable at runtime
"""
import cmd2
from cmd2 import style, fg, bg

class BasicApp(cmd2.Cmd):
CUSTOM_CATEGORY = 'My Custom Commands'

def __init__(self):
super().__init__(multiline_commands=['echo'], persistent_history_file='cmd2_

→˓history.dat',
startup_script='scripts/startup.txt', use_ipython=True)

Prints an intro banner once upon application startup
self.intro = style('Welcome to cmd2!', fg=fg.red, bg=bg.white, bold=True)

Show this as the prompt when asking for input
self.prompt = 'myapp> '

(continues on next page)

3.1. Features 51

cmd2 Documentation, Release 1.3

(continued from previous page)

Used as prompt for multiline commands after the first line
self.continuation_prompt = '... '

Allow access to your application in py and ipy via self
self.self_in_py = True

Set the default category name
self.default_category = 'cmd2 Built-in Commands'

Color to output text in with echo command
self.foreground_color = 'cyan'

Make echo_fg settable at runtime
self.add_settable(cmd2.Settable('foreground_color',

str,
'Foreground color to use with echo command',
choices=fg.colors()))

@cmd2.with_category(CUSTOM_CATEGORY)
def do_intro(self, _):

"""Display the intro banner"""
self.poutput(self.intro)

@cmd2.with_category(CUSTOM_CATEGORY)
def do_echo(self, arg):

"""Example of a multiline command"""
self.poutput(style(arg, fg=self.foreground_color))

if __name__ == '__main__':
app = BasicApp()
app.cmdloop()

Cmd class initializer

A cmd2.Cmd instance or subclass instance is an interactive CLI application framework. There is no good reason to
instantiate Cmd itself; rather, it’s useful as a superclass of a class you define yourself in order to inherit Cmd’s methods
and encapsulate action methods.

Certain things must be initialized within the __init__() method of your class derived from cmd2.Cmd``(all
arguments to ``__init__() are optional):

Cmd.__init__(completekey: str = ’tab’, stdin=None, stdout=None, *, persistent_history_file: str = ”, per-
sistent_history_length: int = 1000, startup_script: str = ”, use_ipython: bool = False, al-
low_cli_args: bool = True, transcript_files: Optional[List[str]] = None, allow_redirection:
bool = True, multiline_commands: Optional[List[str]] = None, terminators: Op-
tional[List[str]] = None, shortcuts: Optional[Dict[str, str]] = None, command_sets: Op-
tional[Iterable[cmd2.command_definition.CommandSet]] = None, auto_load_commands:
bool = True)→ None

An easy but powerful framework for writing line-oriented command interpreters. Extends Python’s cmd pack-
age.

Parameters

• completekey – readline name of a completion key, default to Tab

• stdin – alternate input file object, if not specified, sys.stdin is used

52 Chapter 3. Features

cmd2 Documentation, Release 1.3

• stdout – alternate output file object, if not specified, sys.stdout is used

• persistent_history_file – file path to load a persistent cmd2 command history
from

• persistent_history_length – max number of history items to write to the persis-
tent history file

• startup_script – file path to a script to execute at startup

• use_ipython – should the “ipy” command be included for an embedded IPython shell

• allow_cli_args – if True, then cmd2.Cmd.__init__() will process command
line arguments as either commands to be run or, if -t or --test are given, transcript
files to run. This should be set to False if your application parses its own command line
arguments.

• transcript_files – pass a list of transcript files to be run on initialization. This allows
running transcript tests when allow_cli_args is False. If allow_cli_args is
True this parameter is ignored.

• allow_redirection – If False, prevent output redirection and piping to shell com-
mands. This parameter prevents redirection and piping, but does not alter parsing behavior.
A user can still type redirection and piping tokens, and they will be parsed as such but they
won’t do anything.

• multiline_commands – list of commands allowed to accept multi-line input

• terminators – list of characters that terminate a command. These are mainly intended
for terminating multiline commands, but will also terminate single-line commands. If not
supplied, the default is a semicolon. If your app only contains single-line commands and
you want terminators to be treated as literals by the parser, then set this to an empty list.

• shortcuts – dictionary containing shortcuts for commands. If not supplied, then defaults
to constants.DEFAULT_SHORTCUTS. If you do not want any shortcuts, pass an empty
dictionary.

• command_sets – Provide CommandSet instances to load during cmd2 initialization. This
allows CommandSets with custom constructor parameters to be loaded. This also allows the
a set of CommandSets to be provided when auto_load_commands is set to False

• auto_load_commands – If True, cmd2 will check for all subclasses of CommandSet
that are currently loaded by Python and automatically instantiate and register all commands.
If False, CommandSets must be manually installed with register_command_set.

Cmd instance attributes

The cmd2.Cmd class provides a large number of public instance attributes which allow developers to customize a
cmd2 application further beyond the options provided by the __init__() method.

Public instance attributes

Here are instance attributes of cmd2.Cmd which developers might wish override:

• broken_pipe_warning: if non-empty, this string will be displayed if a broken pipe error occurs

• continuation_prompt: used for multiline commands on 2nd+ line of input

• debug: if True show full stack trace on error (Default: False)

3.1. Features 53

cmd2 Documentation, Release 1.3

• default_category: if any command has been categorized, then all other commands that haven’t been categorized
will display under this section in the help output.

• default_error: the error that prints when a non-existent command is run

• default_sort_key: the default key for sorting string results. Its default value performs a case-insensitive alpha-
betical sort.

• default_to_shell: if True attempt to run unrecognized commands as shell commands (Default: False)

• disabled_commands: commands that have been disabled from use. This is to support commands that are only
available during specific states of the application. This dictionary’s keys are the command names and its values
are DisabledCommand objects.

• doc_header: Set the header used for the help function’s listing of documented functions

• echo: if True, each command the user issues will be repeated to the screen before it is executed. This is
particularly useful when running scripts. This behavior does not occur when running a command at the prompt.
(Default: False)

• editor: text editor program to use with edit command (e.g. vim)

• exclude_from_history: commands to exclude from the history command

• exit_code: this determines the value returned by cmdloop() when exiting the application

• feedback_to_output: if True send nonessential output to stdout, if False send them to stderr (Default:
False)

• help_error: the error that prints when no help information can be found

• hidden_commands: commands to exclude from the help menu and tab completion

• last_result: stores results from the last command run to enable usage of results in a Python script or inter-
active console. Built-in commands don’t make use of this. It is purely there for user-defined commands and
convenience.

• self_in_py: if True allow access to your application in py command via self (Default: False)

• macros: dictionary of macro names and their values

• max_completion_items: max number of CompletionItems to display during tab completion (Default: 50)

• pager: sets the pager command used by the Cmd.ppaged() method for displaying wrapped output using a
pager

• pager_chop: sets the pager command used by the Cmd.ppaged() method for displaying chopped/truncated
output using a pager

• py_bridge_name: name by which embedded Python environments and scripts refer to the cmd2 application by
in order to call commands (Default: app)

• py_locals: dictionary that defines specific variables/functions available in Python shells and scripts (provides
more fine-grained control than making everything available with self_in_py)

• quiet: if True then completely suppress nonessential output (Default: False)

• quit_on_sigint: if True Ctrl-C at the prompt will quit the program instead of just resetting prompt

• settable: dictionary that controls which of these instance attributes are settable at runtime using the set command

• timing: if True display execution time for each command (Default: False)

54 Chapter 3. Features

cmd2 Documentation, Release 1.3

3.1.13 Miscellaneous Features

Timer

Turn the timer setting on, and cmd2 will show the wall time it takes for each command to execute.

Exiting

Mention quit, and EOF handling built into cmd2.

select

Presents numbered options to user, as bash select.

app.select is called from within a method (not by the user directly; it is app.select, not app.do_select).

Cmd.select(opts: Union[str, List[str], List[Tuple[Any, Optional[str]]]], prompt: str = ’Your choice? ’) →
str

Presents a numbered menu to the user. Modeled after the bash shell’s SELECT. Returns the item chosen.

Argument opts can be:

a single string -> will be split into one-word options
a list of strings -> will be offered as options
a list of tuples -> interpreted as (value, text), so that the return value can differ from the text
advertised to the user

def do_eat(self, arg):
sauce = self.select('sweet salty', 'Sauce? ')
result = '{food} with {sauce} sauce, yum!'
result = result.format(food=arg, sauce=sauce)
self.stdout.write(result + '\n')

(Cmd) eat wheaties
1. sweet
2. salty

Sauce? 2
wheaties with salty sauce, yum!

Disabling Commands

cmd2 supports disabling commands during runtime. This is useful if certain commands should only be available
when the application is in a specific state. When a command is disabled, it will not show up in the help menu or tab
complete. If a user tries to run the command, a command-specific message supplied by the developer will be printed.
The following functions support this feature.

enable_command() Enable an individual command

enable_category() Enable an entire category of commands

disable_command() Disable an individual command and set the message that will print when this command is run
or help is called on it while disabled

disable_category() Disable an entire category of commands and set the message that will print when anything in this
category is run or help is called on it while disabled

3.1. Features 55

cmd2 Documentation, Release 1.3

See the definitions of these functions for descriptions of their arguments.

See the do_enable_commands() and do_disable_commands() functions in the HelpCategories example
for a demonstration.

Default to shell

Every cmd2 application can execute operating-system level (shell) commands with shell or a ! shortcut:

(Cmd) shell which python
/usr/bin/python
(Cmd) !which python
/usr/bin/python

However, if the parameter default_to_shell is True, then every command will be attempted on the operating
system. Only if that attempt fails (i.e., produces a nonzero return value) will the application’s own default method
be called.

(Cmd) which python
/usr/bin/python
(Cmd) my dog has fleas
sh: my: not found

*** Unknown syntax: my dog has fleas

Quit on SIGINT

On many shells, SIGINT (most often triggered by the user pressing Ctrl+C) while at the prompt only cancels the
current line, not the entire command loop. By default, a cmd2 application matches this behavior. However, if
quit_on_sigint is set to True, the command loop will quit instead.

(Cmd) typing a comma^C
(Cmd)

Warning: The default SIGINT behavior will only function properly if cmdloop is running in the main thread.

3.1.14 Modular Commands

Overview

Cmd2 also enables developers to modularize their command definitions into CommandSet objects. CommandSets
represent a logical grouping of commands within an cmd2 application. By default, all CommandSets will be dis-
covered and loaded automatically when the cmd2.Cmd class is instantiated with this mixin. This also enables the
developer to dynamically add/remove commands from the cmd2 application. This could be useful for loadable plug-
ins that add additional capabilities. Additionally, it allows for object-oriented encapsulation and garbage collection of
state that is specific to a CommandSet.

Features

• Modular Command Sets - Commands can be broken into separate modules rather than in one god class holding
all commands.

56 Chapter 3. Features

https://github.com/python-cmd2/cmd2/blob/master/examples/help_categories.py

cmd2 Documentation, Release 1.3

• Automatic Command Discovery - In your application, merely defining and importing a CommandSet is suffi-
cient for cmd2 to discover and load your command. No manual registration is necessary.

• Dynamically Loadable/Unloadable Commands - Command functions and CommandSets can both be loaded
and unloaded dynamically during application execution. This can enable features such as dynamically loaded
modules that add additional commands.

• Events handlers - Four event handlers are provided in CommandSet class for custom initialization and cleanup
steps. See Event Handlers.

• Subcommand Injection - Subcommands can be defined separately from the base command. This allows for a
more action-centric instead of object-centric command system while still organizing your code and handlers
around the objects being managed.

See API documentation for cmd2.command_definition.CommandSet

See the examples for more details: https://github.com/python-cmd2/cmd2/tree/master/plugins/command_sets/
examples

Defining Commands

Command Sets

CommandSets group multiple commands together. The plugin will inspect functions within a CommandSet using
the same rules as when they’re defined in cmd2.Cmd. Commands must be prefixed with do_, help functions with
help_, and completer functions with complete_.

A new decorator with_default_category is provided to categorize all commands within a CommandSet in the
same command category. Individual commands in a CommandSet may be override the default category by specifying
a specific category with cmd.with_category.

CommandSet command methods will always expect the same parameters as when defined in a cmd2.Cmd sub-class,
except that selfwill now refer to the CommandSet instead of the cmd2 instance. The cmd2 instance can be accessed
through self._cmd that is populated when the CommandSet is registered.

CommandSets will only be auto-loaded if the constructor takes no arguments. If you need to provide constructor
arguments, see Manual CommandSet Construction

import cmd2
from cmd2 import CommandSet, with_default_category

@with_default_category('My Category')
class AutoLoadCommandSet(CommandSet):

def __init__(self):
super().__init__()

def do_hello(self, _: cmd2.Statement):
self._cmd.poutput('Hello')

def do_world(self, _: cmd2.Statement):
self._cmd.poutput('World')

class ExampleApp(cmd2.Cmd):
"""
CommandSets are automatically loaded. Nothing needs to be done.
"""
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)

(continues on next page)

3.1. Features 57

https://github.com/python-cmd2/cmd2/tree/master/plugins/command_sets/examples
https://github.com/python-cmd2/cmd2/tree/master/plugins/command_sets/examples

cmd2 Documentation, Release 1.3

(continued from previous page)

def do_something(self, arg):
self.poutput('this is the something command')

Manual CommandSet Construction

If a CommandSet class requires parameters to be provided to the constructor, you man manually construct Command-
Sets and pass in the constructor to Cmd2.

import cmd2
from cmd2 import CommandSet, with_default_category

@with_default_category('My Category')
class CustomInitCommandSet(CommandSet):

def __init__(self, arg1, arg2):
super().__init__()

self._arg1 = arg1
self._arg2 = arg2

def do_show_arg1(self, _: cmd2.Statement):
self._cmd.poutput('Arg1: ' + self._arg1)

def do_show_arg2(self, _: cmd2.Statement):
self._cmd.poutput('Arg2: ' + self._arg2)

class ExampleApp(cmd2.Cmd):
"""
CommandSets with constructor parameters are provided in the constructor
"""
def __init__(self, *args, **kwargs):

gotta have this or neither the plugin or cmd2 will initialize
super().__init__(*args, **kwargs)

def do_something(self, arg):
self.last_result = 5
self.poutput('this is the something command')

def main():
my_commands = CustomInitCommandSet(1, 2)
app = ExampleApp(command_sets=[my_commands])
app.cmdloop()

Dynamic Commands

You man also dynamically load and unload commands by installing and removing CommandSets at runtime. For
example, if you could support runtime loadable plugins or add/remove commands based on your state.

You may need to disable command auto-loading if you need dynamically load commands at runtime.

import argparse
import cmd2

(continues on next page)

58 Chapter 3. Features

cmd2 Documentation, Release 1.3

(continued from previous page)

from cmd2 import CommandSet, with_argparser, with_category, with_default_category

@with_default_category('Fruits')
class LoadableFruits(CommandSet):

def __init__(self):
super().__init__()

def do_apple(self, _: cmd2.Statement):
self._cmd.poutput('Apple')

def do_banana(self, _: cmd2.Statement):
self._cmd.poutput('Banana')

@with_default_category('Vegetables')
class LoadableVegetables(CommandSet):

def __init__(self):
super().__init__()

def do_arugula(self, _: cmd2.Statement):
self._cmd.poutput('Arugula')

def do_bokchoy(self, _: cmd2.Statement):
self._cmd.poutput('Bok Choy')

class ExampleApp(cmd2.Cmd):
"""
CommandSets are loaded via the `load` and `unload` commands
"""

def __init__(self, *args, **kwargs):
gotta have this or neither the plugin or cmd2 will initialize
super().__init__(*args, auto_load_commands=False, **kwargs)

self._fruits = LoadableFruits()
self._vegetables = LoadableVegetables()

load_parser = cmd2.Cmd2ArgumentParser()
load_parser.add_argument('cmds', choices=['fruits', 'vegetables'])

@with_argparser(load_parser)
@with_category('Command Loading')
def do_load(self, ns: argparse.Namespace):

if ns.cmds == 'fruits':
try:

self.register_command_set(self._fruits)
self.poutput('Fruits loaded')

except ValueError:
self.poutput('Fruits already loaded')

if ns.cmds == 'vegetables':
try:

self.register_command_set(self._vegetables)
self.poutput('Vegetables loaded')

except ValueError:
(continues on next page)

3.1. Features 59

cmd2 Documentation, Release 1.3

(continued from previous page)

self.poutput('Vegetables already loaded')

@with_argparser(load_parser)
def do_unload(self, ns: argparse.Namespace):

if ns.cmds == 'fruits':
self.unregister_command_set(self._fruits)
self.poutput('Fruits unloaded')

if ns.cmds == 'vegetables':
self.unregister_command_set(self._vegetables)
self.poutput('Vegetables unloaded')

if __name__ == '__main__':
app = ExampleApp()
app.cmdloop()

Event Handlers

The following functions are called at different points in the CommandSet life cycle.

on_register(self, cmd) -> None - Called by cmd2.Cmd as the first step to registering a CommandSet.
The commands defined in this class have not be added to the CLI object at this point. Subclasses can override this
to perform any initialization requiring access to the Cmd object (e.g. configure commands and their parsers based on
CLI state data).

on_registered(self) -> None - Called by cmd2.Cmd after a CommandSet is registered and all its com-
mands have been added to the CLI. Subclasses can override this to perform custom steps related to the newly added
commands (e.g. setting them to a disabled state).

on_unregister(self) -> None - Called by cmd2.Cmd as the first step to unregistering a CommandSet.
Subclasses can override this to perform any cleanup steps which require their commands being registered in the CLI.

on_unregistered(self) -> None - Called by cmd2.Cmd after a CommandSet has been unregistered and
all its commands removed from the CLI. Subclasses can override this to perform remaining cleanup steps.

Injecting Subcommands

Description

Using the with_argparse decorator, it is possible to define subcommands for your command. This has a tendency to
either drive your interface into an object-centric interface. For example, imagine you have a tool that manages your
media collection and you want to manage movies or shows. An object-centric approach would push you to have base
commands such as movies and shows which each have subcommands add, edit, list, delete. If you wanted to present
an action-centric command set, so that add, edit, list, and delete are the base commands, you’d have to organize your
code around these similar actions rather than organizing your code around similar objects being managed.

Subcommand injection allows you to inject subcommands into a base command to present an interface that is sensible
to a user while still organizing your code in whatever structure make more logical sense to the developer.

60 Chapter 3. Features

cmd2 Documentation, Release 1.3

Example

This example is a variation on the Dynamic Commands example above. A cut command is introduced as a base
command and each CommandSet

import argparse
import cmd2
from cmd2 import CommandSet, with_argparser, with_category, with_default_category

@with_default_category('Fruits')
class LoadableFruits(CommandSet):

def __init__(self):
super().__init__()

def do_apple(self, _: cmd2.Statement):
self._cmd.poutput('Apple')

banana_parser = cmd2.Cmd2ArgumentParser()
banana_parser.add_argument('direction', choices=['discs', 'lengthwise'])

@cmd2.as_subcommand_to('cut', 'banana', banana_parser)
def cut_banana(self, ns: argparse.Namespace):

"""Cut banana"""
self._cmd.poutput('cutting banana: ' + ns.direction)

@with_default_category('Vegetables')
class LoadableVegetables(CommandSet):

def __init__(self):
super().__init__()

def do_arugula(self, _: cmd2.Statement):
self._cmd.poutput('Arugula')

bokchoy_parser = cmd2.Cmd2ArgumentParser()
bokchoy_parser.add_argument('style', choices=['quartered', 'diced'])

@cmd2.as_subcommand_to('cut', 'bokchoy', bokchoy_parser)
def cut_bokchoy(self, _: argparse.Namespace):

self._cmd.poutput('Bok Choy')

class ExampleApp(cmd2.Cmd):
"""
CommandSets are automatically loaded. Nothing needs to be done.
"""

def __init__(self, *args, **kwargs):
gotta have this or neither the plugin or cmd2 will initialize
super().__init__(*args, auto_load_commands=False, **kwargs)

self._fruits = LoadableFruits()
self._vegetables = LoadableVegetables()

load_parser = cmd2.Cmd2ArgumentParser()
load_parser.add_argument('cmds', choices=['fruits', 'vegetables'])

(continues on next page)

3.1. Features 61

cmd2 Documentation, Release 1.3

(continued from previous page)

@with_argparser(load_parser)
@with_category('Command Loading')
def do_load(self, ns: argparse.Namespace):

if ns.cmds == 'fruits':
try:

self.register_command_set(self._fruits)
self.poutput('Fruits loaded')

except ValueError:
self.poutput('Fruits already loaded')

if ns.cmds == 'vegetables':
try:

self.register_command_set(self._vegetables)
self.poutput('Vegetables loaded')

except ValueError:
self.poutput('Vegetables already loaded')

@with_argparser(load_parser)
def do_unload(self, ns: argparse.Namespace):

if ns.cmds == 'fruits':
self.unregister_command_set(self._fruits)
self.poutput('Fruits unloaded')

if ns.cmds == 'vegetables':
self.unregister_command_set(self._vegetables)
self.poutput('Vegetables unloaded')

cut_parser = cmd2.Cmd2ArgumentParser()
cut_subparsers = cut_parser.add_subparsers(title='item', help='item to cut')

@with_argparser(cut_parser)
def do_cut(self, ns: argparse.Namespace):

handler = ns.cmd2_handler.get()
if handler is not None:

Call whatever subcommand function was selected
handler(ns)

else:
No subcommand was provided, so call help
self.poutput('This command does nothing without sub-parsers registered')
self.do_help('cut')

if __name__ == '__main__':
app = ExampleApp()
app.cmdloop()

3.1.15 Multiline Commands

Command input may span multiple lines for the commands whose names are listed in the multiline_commands
argument to cmd2.Cmd.__init__(). These commands will be executed only after the user has entered a termi-
nator. By default, the command terminator is ;; specifying the terminators optional argument to cmd2.Cmd.
__init__() allows different terminators. A blank line is always considered a command terminator (cannot be
overridden).

In multiline commands, output redirection characters like > and | are part of the command arguments unless they

62 Chapter 3. Features

cmd2 Documentation, Release 1.3

appear after the terminator.

Continuation prompt

When a user types a Multiline Command it may span more than one line of input. The prompt for the first line of input
is specified by the cmd2.Cmd.prompt instance attribute - see Customizing the Prompt. The prompt for subsequent
lines of input is defined by the cmd2.Cmd.continuation_prompt attribute.

Use cases

Multiline commands should probably be used sparingly in order to preserve a good user experience for your cmd2-
based line-oriented command interpreter application.

However, some use cases benefit significantly from the ability to have commands that span more than one line. For
example, you might want the ability for your user to type in a SQL command, which can often span lines and which
are terminated with a semicolon.

We estimate that less than 5 percent of cmd2 applications use this feature. But it is here for those uses cases where it
provides value.

3.1.16 Integrating with the OS

How to redirect output

See Output Redirection and Pipes

Executing OS commands from within cmd2

cmd2 includes a shell command which executes it’s arguments in the operating system shell:

(Cmd) shell ls -al

If you use the default Shortcuts defined in cmd2 you’ll get a ! shortcut for shell, which allows you to type:

(Cmd) !ls -al

NOTE: cmd2 provides user-friendly tab completion throughout the process of running a shell command - first for the
shell command name itself, and then for file paths in the argument section.

Editors

cmd2 includes the built-in edit command which runs a text editor and optionally opens a file with it:

(Cmd) edit foo.txt

The editor used is determined by the editor settable parameter and can be either a text editor such as vim or a
graphical editor such as VSCode. To set it:

set editor <program_name>

If you have the EDITOR environment variable set, then this will be the default value for editor. If not, then cmd2
will attempt to search for any in a list of common editors for your operating system.

3.1. Features 63

cmd2 Documentation, Release 1.3

Terminal pagers

Output of any command can be displayed one page at a time using the ppaged() method.

Alternatively, a terminal pager can be invoked directly using the ability to run shell commands with the ! shortcut like
so:

(Cmd) !less foo.txt

NOTE: Once you are in a terminal pager, that program temporarily has control of your terminal, NOT cmd2. Typically
you can use either the arrow keys or <PageUp>/<PageDown> keys to scroll around or type q to quit the pager and
return control to your cmd2 application.

Exit codes

The self.exit_code attribute of your cmd2 application controls what exit code is returned from cmdloop()
when it completes. It is your job to make sure that this exit code gets sent to the shell when your application exits by
calling sys.exit(app.cmdloop()).

Invoking With Arguments

Typically you would invoke a cmd2 program by typing:

$ python mycmd2program.py

or:

$ mycmd2program.py

Either of these methods will launch your program and enter the cmd2 command loop, which allows the user to enter
commands, which are then executed by your program.

You may want to execute commands in your program without prompting the user for any input. There are several
ways you might accomplish this task. The easiest one is to pipe commands and their arguments into your program via
standard input. You don’t need to do anything to your program in order to use this technique. Here’s a demonstration
using the examples/example.py included in the source code of cmd2:

$ echo "speak -p some words" | python examples/example.py
omesay ordsway

Using this same approach you could create a text file containing the commands you would like to run, one command
per line in the file. Say your file was called somecmds.txt. To run the commands in the text file using your cmd2
program (from a Windows command prompt):

c:\cmd2> type somecmds.txt | python.exe examples/example.py
omesay ordsway

By default, cmd2 programs also look for commands pass as arguments from the operating system shell, and execute
those commands before entering the command loop:

$ python examples/example.py help

Documented commands (use 'help -v' for verbose/'help <topic>' for details):
===
alias help macro orate quit run_script set shortcuts

(continues on next page)

64 Chapter 3. Features

cmd2 Documentation, Release 1.3

(continued from previous page)

edit history mumble py run_pyscript say shell speak

(Cmd)

You may need more control over command line arguments passed from the operating system shell. For example, you
might have a command inside your cmd2 program which itself accepts arguments, and maybe even option strings.
Say you wanted to run the speak command from the operating system shell, but have it say it in pig latin:

$ python example/example.py speak -p hello there
python example.py speak -p hello there
usage: speak [-h] [-p] [-s] [-r REPEAT] words [words ...]
speak: error: the following arguments are required: words

*** Unknown syntax: -p

*** Unknown syntax: hello

*** Unknown syntax: there
(Cmd)

Uh-oh, that’s not what we wanted. cmd2 treated -p, hello, and there as commands, which don’t exist in that
program, thus the syntax errors.

There is an easy way around this, which is demonstrated in examples/cmd_as_argument.py. By setting
allow_cli_args=False you can so your own argument parsing of the command line:

$ python examples/cmd_as_argument.py speak -p hello there
ellohay heretay

Check the source code of this example, especially the main() function, to see the technique.

Alternatively you can simply wrap the command plus arguments in quotes (either single or double quotes):

$ python example/example.py "speak -p hello there"
ellohay heretay
(Cmd)

Automating cmd2 apps from other CLI/CLU tools

While cmd2 is designed to create interactive command-line applications which enter a Read-Evaluate-Print-Loop
(REPL), there are a great many times when it would be useful to use a cmd2 application as a run-and-done command-
line utility for purposes of automation and scripting.

This is easily achieved by combining the following capabilities of cmd2:

1. Ability to invoke a cmd2 application with arguments

2. Ability to set an exit code when leaving a cmd2 application

3. Ability to exit a cmd2 application with the quit command

Here is a simple example which doesn’t require the quit command since the custom exit command quits while
returning an exit code:

$ python examples/exit_code.py "exit 23"
'examples/exit_code.py' exiting with code: 23
$ echo $?
23

Here is another example using quit:

3.1. Features 65

cmd2 Documentation, Release 1.3

$ python example/example.py "speak -p hello there" quit
ellohay heretay
$

3.1.17 Packaging a cmd2 application for distribution

As a general-purpose tool for building interactive command-line applications, cmd2 is designed to be used in many
ways. How you distribute your cmd2 application to customers or end users is up to you. See the Overview of
Packaging for Python from the Python Packaging Authority for a thorough discussion of the extensive options within
the Python ecosystem.

For developers wishing to package a cmd2 application into a single binary image or compressed file, we can recom-
mend all of the following based on personal and professional experience:

• Deploy your cmd2 Python app using Docker * Powerful and flexible - allows you to control entire user space
and setup other applications like databases * As long as it isn’t problematic for your customers to have Docker
installed, then this is probably the best option

• PyInstaller * Quick and easy - it “just works” and everything you need is installable via pip * Packages up all
of the dependencies into a single directory which you can then zip up

• Nuitka * Converts your Python to C and compiles it to a native binary file * This can be particularly conve-
nient if you wish to obfuscate the Python source code behind your application * Recommend invoking with
--follow-imports flag like: python3 -m nuitka --follow-imports your_app.py

• Conda Constructor * Allows you to create a custom Python distro based on Miniconda

3.1.18 Plugins

cmd2 has a built-in plugin framework which allows developers to create a a cmd2 plugin which can extend basic
cmd2 functionality and can be used by multiple applications.

There are many ways to add functionality to cmd2 using a plugin. Most plugins will be implemented as a mixin.
A mixin is a class that encapsulates and injects code into another class. Developers who use a plugin in their cmd2
project will inject the plugin’s code into their subclass of cmd2.Cmd.

Mixin and Initialization

The following short example shows how to mix in a plugin and how the plugin gets initialized.

Here’s the plugin:

class MyPlugin:
def __init__(self, *args, **kwargs):

code placed here runs before cmd2.Cmd initializes
super().__init__(*args, **kwargs)
code placed here runs after cmd2.Cmd initializes

and an example app which uses the plugin:

import cmd2
import cmd2_myplugin

class Example(cmd2_myplugin.MyPlugin, cmd2.Cmd):
"""An class to show how to use a plugin"""

(continues on next page)

66 Chapter 3. Features

https://packaging.python.org/overview/
https://packaging.python.org/overview/
https://djangostars.com/blog/what-is-docker-and-how-to-use-it-with-python/
https://www.pyinstaller.org
https://nuitka.net
https://github.com/conda/constructor
https://docs.conda.io/en/latest/miniconda.html

cmd2 Documentation, Release 1.3

(continued from previous page)

def __init__(self, *args, **kwargs):
code placed here runs before cmd2.Cmd or
any plugins initialize
super().__init__(*args, **kwargs)
code placed here runs after cmd2.Cmd and
all plugins have initialized

Note how the plugin must be inherited (or mixed in) before cmd2.Cmd. This is required for two reasons:

• The cmd.Cmd.__init__ method in the python standard library does not call super().__init__().
Because of this oversight, if you don’t inherit from MyPlugin first, the MyPlugin.__init__() method
will never be called.

• You may want your plugin to be able to override methods from cmd2.Cmd. If you mixin the plugin after
cmd2.Cmd, the python method resolution order will call cmd2.Cmd methods before it calls those in your
plugin.

Add commands

Your plugin can add user visible commands. You do it the same way in a plugin that you would in a cmd2.Cmd app:

class MyPlugin:
def do_say(self, statement):

"""Simple say command"""
self.poutput(statement)

You have all the same capabilities within the plugin that you do inside a cmd2.Cmd app, including argument parsing
via decorators and custom help methods.

Add (or hide) settings

A plugin may add user controllable settings to the application. Here’s an example:

class MyPlugin:
def __init__(self, *args, **kwargs):

code placed here runs before cmd2.Cmd initializes
super().__init__(*args, **kwargs)
code placed here runs after cmd2.Cmd initializes
self.mysetting = 'somevalue'
self.add_settable(cmd2.Settable('mysetting', str, 'short help message for

→˓mysetting'))

You can hide settings from the user by calling remove_settable(). See Settings for more information.

Decorators

Your plugin can provide a decorator which users of your plugin can use to wrap functionality around their own
commands.

Override methods

Your plugin can override core cmd2.Cmd methods, changing their behavior. This approach should be used sparingly,
because it is very brittle. If a developer chooses to use multiple plugins in their application, and several of the plugins

3.1. Features 67

cmd2 Documentation, Release 1.3

override the same method, only the first plugin to be mixed in will have the overridden method called.

Hooks are a much better approach.

Hooks

Plugins can register hook methods, which are called by cmd2.Cmd during various points in the application and
command processing lifecycle. Plugins should not override any of the deprecated hook methods, instead they should
register their hooks as described in the Hooks section.

You should name your hooks so that they begin with the name of your plugin. Hook methods get mixed into the cmd2
application and this naming convention helps avoid unintentional method overriding.

Here’s a simple example:

class MyPlugin:
def __init__(self, *args, **kwargs):

code placed here runs before cmd2 initializes
super().__init__(*args, **kwargs)
code placed here runs after cmd2 initializes
this is where you register any hook functions
self.register_postparsing_hook(self.cmd2_myplugin_postparsing_hook)

def cmd2_myplugin_postparsing_hook(self, data: cmd2.plugin.PostparsingData) ->
→˓cmd2.plugin.PostparsingData:

"""Method to be called after parsing user input, but before running the
→˓command"""

self.poutput('in postparsing_hook')
return data

Registration allows multiple plugins (or even the application itself) to each inject code to be called during the applica-
tion or command processing lifecycle.

See the Hooks documentation for full details of the application and command lifecycle, including all available hooks
and the ways hooks can influence the lifecycle.

Classes and Functions

Your plugin can also provide classes and functions which can be used by developers of cmd2 based applications.
Describe these classes and functions in your documentation so users of your plugin will know what’s available.

Examples

See https://github.com/python-cmd2/cmd2-plugin-template for more info.

3.1.19 Prompt

cmd2 issues a configurable prompt before soliciting user input.

Customizing the Prompt

This prompt can be configured by setting the cmd2.Cmd.prompt instance attribute. This contains the string which
should be printed as a prompt for user input. See the Pirate example for the simple use case of statically setting the
prompt.

68 Chapter 3. Features

https://github.com/python-cmd2/cmd2-plugin-template
https://github.com/python-cmd2/cmd2/blob/master/examples/pirate.py#L33

cmd2 Documentation, Release 1.3

Continuation Prompt

When a user types a Multiline Command it may span more than one line of input. The prompt for the first line of input
is specified by the cmd2.Cmd.prompt instance attribute. The prompt for subsequent lines of input is defined by the
cmd2.Cmd.continuation_prompt attribute.See the Initialization example for a demonstration of customizing
the continuation prompt.

Updating the prompt

If you wish to update the prompt between commands, you can do so using one of the Application Lifecycle Hooks
such as a Postcommand hook. See PythonScripting for an example of dynamically updating the prompt.

Asynchronous Feedback

cmd2 provides two functions to provide asynchronous feedback to the user without interfering with the command line.
This means the feedback is provided to the user when they are still entering text at the prompt. To use this functionality,
the application must be running in a terminal that supports VT100 control characters and readline. Linux, Mac, and
Windows 10 and greater all support these.

Cmd.async_alert(alert_msg: str, new_prompt: Optional[str] = None)→ None
Display an important message to the user while they are at a command line prompt. To the user it appears as if
an alert message is printed above the prompt and their current input text and cursor location is left alone.

Raises a RuntimeError if called while another thread holds terminal_lock.

IMPORTANT: This function will not print an alert unless it can acquire self.terminal_lock to ensure a
prompt is onscreen. Therefore it is best to acquire the lock before calling this function to guarantee the
alert prints and to avoid raising a RuntimeError.

Parameters

• alert_msg – the message to display to the user

• new_prompt – if you also want to change the prompt that is displayed, then include it here
see async_update_prompt() docstring for guidance on updating a prompt

Cmd.async_update_prompt(new_prompt: str)→ None
Update the command line prompt while the user is still typing at it. This is good for alerting the user to system
changes dynamically in between commands. For instance you could alter the color of the prompt to indicate
a system status or increase a counter to report an event. If you do alter the actual text of the prompt, it is best
to keep the prompt the same width as what’s on screen. Otherwise the user’s input text will be shifted and the
update will not be seamless.

Raises a RuntimeError if called while another thread holds terminal_lock.

IMPORTANT: This function will not update the prompt unless it can acquire self.terminal_lock to ensure
a prompt is onscreen. Therefore it is best to acquire the lock before calling this function to guarantee the
prompt changes and to avoid raising a RuntimeError.

If user is at a continuation prompt while entering a multiline command, the onscreen prompt will not
change. However self.prompt will still be updated and display immediately after the multiline line com-
mand completes.

Parameters new_prompt – what to change the prompt to

3.1. Features 69

https://github.com/python-cmd2/cmd2/blob/master/examples/initialization.py#L33
https://github.com/python-cmd2/cmd2/blob/master/examples/python_scripting.py#L34-L48

cmd2 Documentation, Release 1.3

cmd2 also provides a function to change the title of the terminal window. This feature requires the application be
running in a terminal that supports VT100 control characters. Linux, Mac, and Windows 10 and greater all support
these.

Cmd.set_window_title(title: str)→ None
Set the terminal window title.

Raises a RuntimeError if called while another thread holds terminal_lock.

IMPORTANT: This function will not set the title unless it can acquire self.terminal_lock to avoid writing
to stderr while a command is running. Therefore it is best to acquire the lock before calling this function
to guarantee the title changes and to avoid raising a RuntimeError.

Parameters title – the new window title

The easiest way to understand these functions is to see the AsyncPrinting example for a demonstration.

3.1.20 Output Redirection and Pipes

As in POSIX shells, output of a command can be redirected and/or piped. This feature is fully cross-platform and
works identically on Windows, macOS, and Linux.

Output Redirection

Redirect to a file

Redirecting the output of a cmd2 command to a file works just like in POSIX shells:

• send to a file with >, as in mycommand args > filename.txt

• append to a file with >>, as in mycommand args >> filename.txt

If you need to include any of these redirection characters in your command, you can enclose them in quotation marks,
mycommand 'with > in the argument'.

Redirect to the clipboard

cmd2 output redirection supports an additional feature not found in most shells - if the file name following the > or >>
is left blank, then the output is redirected to the operating system clipboard so that it can then be pasted into another
program.

• overwrite the clipboard with mycommand args >

• append to the clipboard with mycommand args >>

Pipes

Piping the output of a cmd2 command to a shell command works just like in POSIX shells:

• pipe as input to a shell command with |, as in mycommand args | wc

70 Chapter 3. Features

https://github.com/python-cmd2/cmd2/blob/master/examples/async_printing.py

cmd2 Documentation, Release 1.3

Multiple Pipes and Redirection

Multiple pipes, optionally followed by a redirect, are supported. Thus, it is possible to do something like the following:

(Cmd) help | grep py | wc > output.txt

The above runs the help command, pipes its output to grep searching for any lines containing py, then pipes the output
of grep to the wc “word count” command, and finally writes redirects the output of that to a file called output.txt.

Disabling Redirection

Note: If you wish to disable cmd2’s output redirection and pipes features, you can do so by setting the
allow_redirection attribute of your cmd2.Cmd class instance to False. This would be useful, for exam-
ple, if you want to restrict the ability for an end user to write to disk or interact with shell commands for security
reasons:

from cmd2 import Cmd
class App(Cmd):

def __init__(self):
self.allow_redirection = False

cmd2’s parser will still treat the >, >>, and | symbols as output redirection and pipe symbols and will strip arguments
after them from the command line arguments accordingly. But output from a command will not be redirected to a file
or piped to a shell command.

Limitations of Redirection

Some limitations apply to redirection and piping within cmd2 applications:

• Can only pipe to shell commands, not other cmd2 application commands

• stdout gets redirected/piped, stderr does not

3.1.21 Scripting

Operating system shells have long had the ability to execute a sequence of commands saved in a text file. These
script files make long sequences of commands easier to repeatedly execute. cmd2 supports two similar mechanisms:
command scripts and python scripts.

Command Scripts

A command script contains a sequence of commands typed at the the prompt of a cmd2 based application. Unlike
operating system shell scripts, command scripts can’t contain logic or loops.

Creating Command Scripts

Command scripts can be created in several ways:

• creating a text file using any method of your choice

• using the built-in edit command to create or edit an existing text file

3.1. Features 71

cmd2 Documentation, Release 1.3

• saving previously entered commands to a script file using history -s

If you create create a text file from scratch, just include one command per line, exactly as you would type it inside a
cmd2 application.

Running Command Scripts

Command script files can be executed using the built-in run_script command or the @ shortcut (if your application
is using the default shortcuts). Both ASCII and UTF-8 encoded unicode text files are supported. The run_script
command supports tab completion of file system paths. There is a variant _relative_run_script command or @@
shortcut (if using the default shortcuts) for use within a script which uses paths relative to the first script.

Comments

Any command line input where the first non-whitespace character is a # will be treated as a comment. This means
any # character appearing later in the command will be treated as a literal. The same applies to a # in the middle of a
multiline command, even if it is the first character on a line.

Comments are useful in scripts, but would be pointless within an interactive session.

(Cmd) # this is a comment
(Cmd) command # this is not a comment

Python Scripts

If you require logic flow, loops, branching, or other advanced features, you can write a python script which executes
in the context of your cmd2 app. This script is run using the run_pyscript command. Here’s a simple example that
uses the arg_printer script:

(Cmd) run_pyscript examples/scripts/arg_printer.py foo bar 'baz 23'
Running Python script 'arg_printer.py' which was called with 3 arguments
arg 1: 'foo'
arg 2: 'bar'
arg 3: 'baz 23'

run_pyscript supports tab completion of file system paths, and as shown above it has the ability to pass command-line
arguments to the scripts invoked.

Python scripts executed with run_pyscript can run cmd2 application commands by using the syntax:

app(‘command args’)

where:

• app is a configurable name which can be changed by setting the cmd2.Cmd.py_bridge_name attribute

• command and args are entered exactly like they would be entered by a user of your application.

See python_scripting example and associated conditional script for more information.

Advanced Support

When implementing a command, setting self.last_result allows for application-specific data to be returned to
a python script from the command. This can allow python scripts to make decisions based on the result of previous

72 Chapter 3. Features

https://github.com/python-cmd2/cmd2/blob/master/examples/scripts/arg_printer.py
https://github.com/python-cmd2/cmd2/blob/master/examples/python_scripting.py
https://github.com/python-cmd2/cmd2/blob/master/examples/scripts/conditional.py

cmd2 Documentation, Release 1.3

application commands.

The application command (default: app) returns a cmd2.CommandResult for each command. The cmd2.
CommandResult object provides the captured output to stdout and stderr while a command is executing.
Additionally, it provides the value that command stored in self.last_result.

Additionally, an external test Mixin plugin has been provided to allow for python based external testing of the applica-
tion. For example, for system integration tests scenarios where the python application is a component of a larger suite
of tools and components. This interface allows python based tests to call commands and validate results as part of a
larger test suite. See External Test Plugin

3.1.22 Settings

Settings provide a mechanism for a user to control the behavior of a cmd2 based application. A setting is stored in
an instance attribute on your subclass of cmd2.Cmd and must also appear in the cmd2.Cmd.settable dictionary.
Developers may set default values for these settings and users can modify them at runtime using the set command.
Developers can Create New Settings and can also Hide Builtin Settings from the user.

Builtin Settings

cmd2 has a number of builtin settings. These settings control the behavior of certain application features and Builtin
Commands. Users can use the set command to show all settings and to modify the value of any setting.

allow_style

Output generated by cmd2 programs may contain ANSI escape seqences which instruct the terminal to apply colors
or text styling (i.e. bold) to the output. The allow_style setting controls the behavior of these escape sequences
in output generated with any of the following methods:

• cmd2.Cmd.poutput()

• cmd2.Cmd.perror()

• cmd2.Cmd.pwarning()

• cmd2.Cmd.pexcept()

• cmd2.Cmd.pfeedback()

• cmd2.Cmd.ppaged()

This setting can be one of three values:

• Never - all ANSI escape sequences which instruct the terminal to style output are stripped from the output.

• Terminal - (the default value) pass through ANSI escape sequences when the output is being sent to the
terminal, but if the output is redirected to a pipe or a file the escape sequences are stripped.

• Always - ANSI escape sequences are always passed through to the output

debug

The default value of this setting is False, which causes the pexcept() method to only display the message from
an exception. However, if the debug setting is True, then the entire stack trace will be printed.

3.1. Features 73

cmd2 Documentation, Release 1.3

echo

If True, each command the user issues will be repeated to the screen before it is executed. This is particularly useful
when running scripts. This behavior does not occur when running a command at the prompt.

editor

Similar to the EDITOR shell variable, this setting contains the name of the program which should be run by the edit
command.

feedback_to_output

Controls whether feedback generated with the pfeedback() method is sent to sys.stdout or sys.stderr. If
False the output will be sent to sys.stderr

If True the output is sent to stdout (which is often the screen but may be redirected). The feedback output will be
mixed in with and indistinguishable from output generated with poutput().

max_completion_items

Maximum number of CompletionItems to display during tab completion. A CompletionItem is a special kind of tab
completion hint which displays both a value and description and uses one line for each hint. Tab complete the set
command for an example.

If the number of tab completion hints exceeds max_completion_items, then they will be displayed in the typical
columnized format and will not include the description text of the CompletionItem.

quiet

If True, output generated by calling pfeedback() is suppressed. If False, the feedback_to_output setting con-
trols where the output is sent.

timing

If True, the elapsed time is reported for each command executed.

Create New Settings

Your application can define user-settable parameters which your code can reference. In your initialization code:

1. Create an instance attribute with a default value.

2. Create a Settable object which describes your setting.

3. Pass the Settable object to cmd2.Cmd.add_settable().

Here’s an example, from examples/environment.py:

74 Chapter 3. Features

cmd2 Documentation, Release 1.3

#!/usr/bin/env python
coding=utf-8
"""
A sample application for cmd2 demonstrating customized environment parameters
"""
import cmd2

class EnvironmentApp(cmd2.Cmd):
""" Example cmd2 application. """

def __init__(self):
super().__init__()
self.degrees_c = 22
self.sunny = False
self.add_settable(cmd2.Settable('degrees_c',

int,
'Temperature in Celsius',
onchange_cb=self._onchange_degrees_c
))

self.add_settable(cmd2.Settable('sunny', bool, 'Is it sunny outside?'))

def do_sunbathe(self, arg):
"""Attempt to sunbathe."""
if self.degrees_c < 20:

result = "It's {} C - are you a penguin?".format(self.degrees_c)
elif not self.sunny:

result = 'Too dim.'
else:

result = 'UV is bad for your skin.'
self.poutput(result)

def _onchange_degrees_c(self, param_name, old, new):
if it's over 40C, it's gotta be sunny, right?
if new > 40:

self.sunny = True

if __name__ == '__main__':
import sys
c = EnvironmentApp()
sys.exit(c.cmdloop())

If you want to be notified when a setting changes (as we do above), then be sure to supply a method to the
onchange_cb parameter of the .cmd2.utils.Settable. This method will be called after the user changes a setting,
and will receive both the old value and the new value.

(Cmd) set --long | grep sunny
sunny: False # Is it sunny outside?
(Cmd) set --long | grep degrees
degrees_c: 22 # Temperature in Celsius
(Cmd) sunbathe
Too dim.
(Cmd) set degrees_c 41
degrees_c - was: 22
now: 41
(Cmd) set sunny

(continues on next page)

3.1. Features 75

cmd2 Documentation, Release 1.3

(continued from previous page)

sunny: True
(Cmd) sunbathe
UV is bad for your skin.
(Cmd) set degrees_c 13
degrees_c - was: 41
now: 13
(Cmd) sunbathe
It's 13 C - are you a penguin?

Hide Builtin Settings

You may want to prevent a user from modifying a builtin setting. A setting must appear in the cmd2.Cmd.settable
dictionary in order for it to be available to the set command.

Let’s say that you never want end users of your program to be able to enable full debug tracebacks to print out if
an error occurs. You might want to hide the debug setting. To do so, remove it from the cmd2.Cmd.settable
dictionary after you initialize your object. The cmd2.Cmd.remove_settable() convenience method makes this
easy:

class MyApp(cmd2.Cmd):

def __init__(self):
super().__init__()
self.remove_settable('debug')

3.1.23 Shortcuts, Aliases, and Macros

Shortcuts

Command shortcuts for long command names and common commands can make life more convenient for your users.
Shortcuts are used without a space separating them from their arguments, like !ls. By default, the following shortcuts
are defined:

? help

! shell: run as OS-level command

@ run script file

@@ run script file; filename is relative to current script location

To define more shortcuts, update the dict App.shortcuts with the {‘shortcut’: ‘command_name’} (omit do_):

class App(Cmd2):
def __init__(self):

shortcuts = dict(cmd2.DEFAULT_SHORTCUTS)
shortcuts.update({'*': 'sneeze', '~': 'squirm'})
cmd2.Cmd.__init__(self, shortcuts=shortcuts)

Warning: Shortcuts need to be created by updating the shortcuts dictionary attribute prior to calling the
cmd2.Cmd super class __init__() method. Moreover, that super class init method needs to be called after
updating the shortcuts attribute This warning applies in general to many other attributes which are not settable
at runtime.

76 Chapter 3. Features

cmd2 Documentation, Release 1.3

Note: Command, alias, and macro names cannot start with a shortcut

Aliases

In addition to shortcuts, cmd2 provides a full alias feature via the alias command. Aliases work in a similar fashion
to aliases in the Bash shell.

The syntax to create an alias is: alias create name command [args].

Ex: alias create ls !ls -lF

Redirectors and pipes should be quoted in alias definition to prevent the alias create command from being
redirected:

alias create save_results print_results ">" out.txt

Tab completion recognizes an alias, and completes as if its actual value was on the command line.

For more details run: help alias create

Use alias list to see all or some of your aliases. The output of this command displays your aliases using the
same command that was used to create them. Therefore you can place this output in a cmd2 startup script to recreate
your aliases each time you start the application

Ex: alias list

For more details run: help alias list

Use alias delete to remove aliases

For more details run: help alias delete

Note: Aliases cannot have the same name as a command or macro

Macros

cmd2 provides a feature that is similar to aliases called macros. The major difference between macros and aliases is
that macros can contain argument placeholders. Arguments are expressed when creating a macro using {#} notation
where {1} means the first argument.

The following creates a macro called my_macro that expects two arguments:

macro create my_macro make_dinner -meat {1} -veggie {2}

When the macro is called, the provided arguments are resolved and the assembled command is run. For example:

my_macro beef broccoli —> make_dinner -meat beef -veggie broccoli

Similar to aliases, pipes and redirectors need to be quoted in the definition of a macro:

macro create lc !cat "{1}" "|" less

To use the literal string {1} in your command, escape it this way: {{1}}. Because macros do not resolve until after
hitting <Enter>, tab completion will only complete paths while typing a macro.

For more details run: help macro create

The macro command has list and delete subcommands that function identically to the alias subcommands of the
same name. Like aliases, macros can be created via a cmd2 startup script to preserve them across application sessions.

For more details on listing macros run: help macro list

For more details on deleting macros run: help macro delete

3.1. Features 77

cmd2 Documentation, Release 1.3

Note: Macros cannot have the same name as a command or alias

3.1.24 Startup Commands

cmd2 provides a couple different ways for running commands immediately after your application starts up:

1. Commands at Invocation

2. Startup Script

Commands run as part of a startup script are always run immediately after the application finishes initializing so they
are guaranteed to run before any Commands At Invocation.

Commands At Invocation

You can send commands to your app as you invoke it by including them as extra arguments to the program. cmd2
interprets each argument as a separate command, so you should enclose each command in quotation marks if it is more
than a one-word command. You can use either single or double quotes for this purpose.

$ python examples/example.py "say hello" "say Gracie" quit
hello
Gracie

You can end your commands with a quit command so that your cmd2 application runs like a non-interactive command-
line utility (CLU). This means that it can then be scripted from an external application and easily used in automation.

Note: If you wish to disable cmd2’s consumption of command-line arguments, you can do so by setting the
allow_cli_args argument of your cmd2.Cmd class instance to False. This would be useful, for example,
if you wish to use something like Argparse to parse the overall command line arguments for your application:

from cmd2 import Cmd
class App(Cmd):

def __init__(self):
super().__init__(allow_cli_args=False)

Startup Script

You can execute commands from an initialization script by passing a file path to the startup_script argument to
the cmd2.Cmd.__init__() method like so:

class StartupApp(cmd2.Cmd):
def __init__(self):

cmd2.Cmd.__init__(self, startup_script='.cmd2rc')

This text file should contain a Command Script. See the AliasStartup example for a demonstration.

3.1.25 Table Creation

cmd2 provides a table creation class called cmd2.table_creator.TableCreator. This class handles ANSI
style sequences and characters with display widths greater than 1 when performing width calculations. It was designed
with the ability to build tables one row at a time. This helps when you have large data sets that you don’t want to hold
in memory or when you receive portions of the data set incrementally.

78 Chapter 3. Features

https://docs.python.org/3/library/argparse.html
https://github.com/python-cmd2/cmd2/blob/master/examples/alias_startup.py

cmd2 Documentation, Release 1.3

TableCreator has one public method: cmd2.table_creator.TableCreator.generate_row()

This function and the cmd2.table_creator.Column class provide all features needed to build tables with head-
ers, borders, colors, horizontal and vertical alignment, and wrapped text. However, it’s generally easier to inherit from
this class and implement a more granular API rather than use TableCreator directly.

The following table classes build upon TableCreator and are provided in the cmd2.table_creator module. They
can be used as is or as examples for how to build your own table classes.

cmd2.table_creator.SimpleTable - Implementation of TableCreator which generates a borderless table
with an optional divider row after the header. This class can be used to create the whole table at once or one row at a
time.

cmd2.table_creator.BorderedTable - Implementation of TableCreator which generates a table with bor-
ders around the table and between rows. Borders between columns can also be toggled. This class can be used to
create the whole table at once or one row at a time.

cmd2.table_creator.AlternatingTable - Implementation of BorderedTable which uses background col-
ors to distinguish between rows instead of row border lines. This class can be used to create the whole table at once or
one row at a time.

See the table_creation example to see these classes in use

3.1.26 Transcripts

A transcript is both the input and output of a successful session of a cmd2-based app which is saved to a text file. With
no extra work on your part, your app can play back these transcripts as a unit test. Transcripts can contain regular
expressions, which provide the flexibility to match responses from commands that produce dynamic or variable output.

Creating From History

A transcript can automatically generated based upon commands previously executed in the history using history
-t:

(Cmd) help
...
(Cmd) help history
...
(Cmd) history 1:2 -t transcript.txt
2 commands and outputs saved to transcript file 'transcript.txt'

This is by far the easiest way to generate a transcript.

Warning: Make sure you use the poutput() method in your cmd2 application for generating command output.
This method of the cmd2.Cmd class ensure that output is properly redirected when redirecting to a file, piping to
a shell command, and when generating a transcript.

Creating From A Script File

A transcript can also be automatically generated from a script file using run_script -t:

(Cmd) run_script scripts/script.txt -t transcript.txt
2 commands and their outputs saved to transcript file 'transcript.txt'
(Cmd)

3.1. Features 79

https://github.com/python-cmd2/cmd2/blob/master/examples/table_creation.py

cmd2 Documentation, Release 1.3

This is a particularly attractive option for automatically regenerating transcripts for regression testing as your cmd2
application changes.

Creating Manually

Here’s a transcript created from python examples/example.py:

(Cmd) say -r 3 Goodnight, Gracie
Goodnight, Gracie
Goodnight, Gracie
Goodnight, Gracie
(Cmd) mumble maybe we could go to lunch
like maybe we ... could go to hmmm lunch
(Cmd) mumble maybe we could go to lunch
well maybe we could like go to er lunch right?

This transcript has three commands: they are on the lines that begin with the prompt. The first command looks like
this:

(Cmd) say -r 3 Goodnight, Gracie

Following each command is the output generated by that command.

The transcript ignores all lines in the file until it reaches the first line that begins with the prompt. You can take
advantage of this by using the first lines of the transcript as comments:

Lines at the beginning of the transcript that do not
; start with the prompt i.e. '(Cmd) ' are ignored.
/* You can use them for comments. */

All six of these lines before the first prompt are treated as comments.

(Cmd) say -r 3 Goodnight, Gracie
Goodnight, Gracie
Goodnight, Gracie
Goodnight, Gracie
(Cmd) mumble maybe we could go to lunch
like maybe we ... could go to hmmm lunch
(Cmd) mumble maybe we could go to lunch
maybe we could like go to er lunch right?

In this example I’ve used several different commenting styles, and even bare text. It doesn’t matter what you put on
those beginning lines. Everything before:

(Cmd) say -r 3 Goodnight, Gracie

will be ignored.

Regular Expressions

If we used the above transcript as-is, it would likely fail. As you can see, the mumble command doesn’t always return
the same thing: it inserts random words into the input.

Regular expressions can be included in the response portion of a transcript, and are surrounded by slashes:

80 Chapter 3. Features

cmd2 Documentation, Release 1.3

(Cmd) mumble maybe we could go to lunch
/.*\bmaybe\b.*\bcould\b.*\blunch\b.*/
(Cmd) mumble maybe we could go to lunch
/.*\bmaybe\b.*\bcould\b.*\blunch\b.*/

Without creating a tutorial on regular expressions, this one matches anything that has the words maybe, could, and
lunch in that order. It doesn’t ensure that we or go or to appear in the output, but it does work if mumble happens
to add words to the beginning or the end of the output.

Since the output could be multiple lines long, cmd2 uses multiline regular expression matching, and also uses the
DOTALL flag. These two flags subtly change the behavior of commonly used special characters like ., ^ and $, so
you may want to double check the Python regular expression documentation.

If your output has slashes in it, you will need to escape those slashes so the stuff between them is not interpred as a
regular expression. In this transcript:

(Cmd) say cd /usr/local/lib/python3.6/site-packages
/usr/local/lib/python3.6/site-packages

the output contains slashes. The text between the first slash and the second slash, will be interpreted as a regular
expression, and those two slashes will not be included in the comparison. When replayed, this transcript would
therefore fail. To fix it, we could either write a regular expression to match the path instead of specifying it verbatim,
or we can escape the slashes:

(Cmd) say cd /usr/local/lib/python3.6/site-packages
\/usr\/local\/lib\/python3.6\/site-packages

Warning: Be aware of trailing spaces and newlines. Your commands might output trailing spaces which are
impossible to see. Instead of leaving them invisible, you can add a regular expression to match them, so that you
can see where they are when you look at the transcript:

(Cmd) set editor
editor: vim/ /

Some terminal emulators strip trailing space when you copy text from them. This could make the actual data
generated by your app different than the text you pasted into the transcript, and it might not be readily obvious why
the transcript is not passing. Consider using Output Redirection and Pipes to the clipboard or to a file to ensure
you accurately capture the output of your command.

If you aren’t using regular expressions, make sure the newlines at the end of your transcript exactly match the
output of your commands. A common cause of a failing transcript is an extra or missing newline.

If you are using regular expressions, be aware that depending on how you write your regex, the newlines after the
regex may or may not matter. \Z matches after the newline at the end of the string, whereas $ matches the end of
the string or just before a newline.

Running A Transcript

Once you have created a transcript, it’s easy to have your application play it back and check the output. From within
the examples/ directory:

$ python example.py --test transcript_regex.txt
.
--

(continues on next page)

3.1. Features 81

https://docs.python.org/3/library/re.html

cmd2 Documentation, Release 1.3

(continued from previous page)

Ran 1 test in 0.013s

OK

The output will look familiar if you use unittest, because that’s exactly what happens. Each command in the
transcript is run, and we assert the output matches the expected result from the transcript.

Note: If you have passed an allow_cli_args parameter containing False to cmd2.Cmd.__init__() in order
to disable parsing of command line arguments at invocation, then the use of -t or --test to run transcript testing
is automatically disabled. In this case, you can alternatively provide a value for the optional transcript_files
when constructing the instance of your cmd2.Cmd derived class in order to cause a transcript test to run:

from cmd2 import Cmd
class App(Cmd):

customized attributes and methods here

if __name__ == '__main__':
app = App(transcript_files=['exampleSession.txt'])
app.cmdloop()

82 Chapter 3. Features

CHAPTER 4

Examples

4.1 Examples

4.1.1 Alternate Event Loops

Throughout this documentation we have focused on the 90% use case, that is the use case we believe around 90+%
of our user base is looking for. This focuses on ease of use and the best out-of-the-box experience where developers
get the most functionality for the least amount of effort. We are talking about running cmd2 applications with the
cmdloop() method:

from cmd2 import Cmd
class App(Cmd):

customized attributes and methods here
app = App()
app.cmdloop()

However, there are some limitations to this way of using cmd2, mainly that cmd2 owns the inner loop of a program.
This can be unnecessarily restrictive and can prevent using libraries which depend on controlling their own event loop.

Many Python concurrency libraries involve or require an event loop which they are in control of such as asyncio,
gevent, Twisted, etc.

cmd2 applications can be executed in a fashion where cmd2 doesn’t own the main loop for the program by using code
like the following:

import cmd2

class Cmd2EventBased(cmd2.Cmd):
def __init__(self):

cmd2.Cmd.__init__(self)

... your class code here ...

if __name__ == '__main__':

(continues on next page)

83

https://docs.python.org/3/library/asyncio.html
http://www.gevent.org/
https://twistedmatrix.com

cmd2 Documentation, Release 1.3

(continued from previous page)

app = Cmd2EventBased()
app.preloop()

Do this within whatever event loop mechanism you wish to run a single command
cmd_line_text = "help history"
app.runcmds_plus_hooks([cmd_line_text])

app.postloop()

The runcmds_plus_hooks() method runs multiple commands via onecmd_plus_hooks().

The onecmd_plus_hooks() method will do the following to execute a single command in a normal fashion:

1. Parse user input into a Statement object

2. Call methods registered with register_postparsing_hook()

3. Redirect output, if user asked for it and it’s allowed

4. Start timer

5. Call methods registered with register_precmd_hook()

6. Call precmd() - for backwards compatibility with cmd.Cmd

7. Add statement to History

8. Call do_command method

9. Call methods registered with register_postcmd_hook()

10. Call postcmd() - for backwards compatibility with cmd.Cmd

11. Stop timer and display the elapsed time

12. Stop redirecting output if it was redirected

13. Call methods registered with register_cmdfinalization_hook()

Running in this fashion enables the ability to integrate with an external event loop. However, how to integrate with
any specific event loop is beyond the scope of this documentation. Please note that running in this fashion comes with
several disadvantages, including:

• Requires the developer to write more code

• Does not support transcript testing

• Does not allow commands at invocation via command-line arguments

84 Chapter 4. Examples

CHAPTER 5

Plugins

5.1 Plugins

5.1.1 External Test Plugin

Overview

The External Test Plugin supports testing of a cmd2 application by exposing access cmd2 commands with the same
context as from within a cmd2 Python Scripts. This interface captures stdout, stderr, as well as any application-
specific data returned by the command. This also allows for verification of an application’s support for Python Scripts
and enables the cmd2 application to be tested as part of a larger system integration test.

Example cmd2 Application

The following short example shows how to mix in the external test plugin to create a fixture for testing your cmd2
application.

Define your cmd2 application

import cmd2
class ExampleApp(cmd2.Cmd):

"""An class to show how to use a plugin"""
def __init__(self, *args, **kwargs):

gotta have this or neither the plugin or cmd2 will initialize
super().__init__(*args, **kwargs)

def do_something(self, arg):
self.last_result = 5
self.poutput('this is the something command')

85

https://github.com/python-cmd2/cmd2/tree/cmdset_settables/plugins/ext_test

cmd2 Documentation, Release 1.3

Defining the test fixture

In your test, define a fixture for your cmd2 application

import cmd2_ext_test
import pytest

class ExampleAppTester(cmd2_ext_test.ExternalTestMixin, ExampleApp):
def __init__(self, *args, **kwargs):

gotta have this or neither the plugin or cmd2 will initialize
super().__init__(*args, **kwargs)

@pytest.fixture
def example_app():

app = ExampleAppTester()
app.fixture_setup()
yield app
app.fixture_teardown()

Writing Tests

Now write your tests that validate your application using the app_cmd() function to access the cmd2 application’s
commands. This allows invocation of the application’s commands in the same format as a user would type. The results
from calling a command matches what is returned from running an python script with cmd2’s run_pyscript command,
which provides stdout, stderr, and the command’s result data.

from cmd2 import CommandResult

def test_something(example_app):
execute a command
out = example_app.app_cmd("something")

validate the command output and result data
assert isinstance(out, CommandResult)
assert str(out.stdout).strip() == 'this is the something command'
assert out.data == 5

86 Chapter 5. Plugins

CHAPTER 6

Testing

6.1 Testing

6.1.1 Overview

This covers special considerations when writing unit tests for a cmd2 application.

6.1.2 Testing Commands

The External Test Plugin provides a mixin class with an :meth:‘‘ function that allows external calls to application
commands. The app_cmd() function captures and returns stdout, stderr, and the command-specific result data.

6.1.3 Mocking

If you need to mock anything in your cmd2 application, and most specifically in sub-classes of Cmd or CommandSet,
you must use Autospeccing, spec=True, or whatever equivalant is provided in the mocking library you’re using.

In order to automatically load functions as commands cmd2 performs a number of reflection calls to look up attributes
of classes defined in your cmd2 application. Many mocking libraries will automatically create mock objects to match
any attribute being requested, regardless of whether they’re present in the object being mocked. This behavior can
incorrectly instruct cmd2 to treat a function or attribute as something it needs to recognize and process. To prevent
this, you should always mock with Autospeccing or spec=True enabled.

6.1.4 Example of spec=True

def test_mocked_methods():
with mock.patch.object(MockMethodApp, 'foo', spec=True):

cli = MockMethodApp()

87

https://docs.python.org/3/library/unittest.mock.html#autospeccing
https://docs.python.org/3/library/unittest.mock.html#patch
https://docs.python.org/3/library/unittest.mock.html#autospeccing
https://docs.python.org/3/library/unittest.mock.html#patch

cmd2 Documentation, Release 1.3

88 Chapter 6. Testing

CHAPTER 7

API Reference

7.1 API Reference

These pages document the public API for cmd2. If a method, class, function, attribute, or constant is not documented
here, consider it private and subject to change. There are many classes, methods, functions, and constants in the source
code which do not begin with an underscore but are not documented here. When looking at the source code for this
library, you can not safely assume that because something doesn’t start with an underscore, it is a public API.

If a release of this library changes any of the items documented here, the version number will be incremented according
to the Semantic Version Specification.

This documentation is for cmd2 version 1.3.10.

7.1.1 cmd2.Cmd

class cmd2.Cmd(completekey: str = ’tab’, stdin=None, stdout=None, *, persistent_history_file: str =
”, persistent_history_length: int = 1000, startup_script: str = ”, use_ipython: bool =
False, allow_cli_args: bool = True, transcript_files: Optional[List[str]] = None, al-
low_redirection: bool = True, multiline_commands: Optional[List[str]] = None, ter-
minators: Optional[List[str]] = None, shortcuts: Optional[Dict[str, str]] = None,
command_sets: Optional[Iterable[cmd2.command_definition.CommandSet]] = None,
auto_load_commands: bool = True)

An easy but powerful framework for writing line-oriented command interpreters.

Extends the Python Standard Library’s cmd package by adding a lot of useful features to the out of the box
configuration.

Line-oriented command interpreters are often useful for test harnesses, internal tools, and rapid prototypes.

89

https://semver.org

cmd2 Documentation, Release 1.3

__init__(completekey: str = ’tab’, stdin=None, stdout=None, *, persistent_history_file: str = ”, per-
sistent_history_length: int = 1000, startup_script: str = ”, use_ipython: bool = False, al-
low_cli_args: bool = True, transcript_files: Optional[List[str]] = None, allow_redirection:
bool = True, multiline_commands: Optional[List[str]] = None, terminators: Op-
tional[List[str]] = None, shortcuts: Optional[Dict[str, str]] = None, command_sets: Op-
tional[Iterable[cmd2.command_definition.CommandSet]] = None, auto_load_commands:
bool = True)→ None

An easy but powerful framework for writing line-oriented command interpreters. Extends Python’s cmd
package.

Parameters

• completekey – readline name of a completion key, default to Tab

• stdin – alternate input file object, if not specified, sys.stdin is used

• stdout – alternate output file object, if not specified, sys.stdout is used

• persistent_history_file – file path to load a persistent cmd2 command history
from

• persistent_history_length – max number of history items to write to the per-
sistent history file

• startup_script – file path to a script to execute at startup

• use_ipython – should the “ipy” command be included for an embedded IPython shell

• allow_cli_args – if True, then cmd2.Cmd.__init__() will process command
line arguments as either commands to be run or, if -t or --test are given, transcript
files to run. This should be set to False if your application parses its own command line
arguments.

• transcript_files – pass a list of transcript files to be run on initializa-
tion. This allows running transcript tests when allow_cli_args is False. If
allow_cli_args is True this parameter is ignored.

• allow_redirection – If False, prevent output redirection and piping to shell com-
mands. This parameter prevents redirection and piping, but does not alter parsing behavior.
A user can still type redirection and piping tokens, and they will be parsed as such but they
won’t do anything.

• multiline_commands – list of commands allowed to accept multi-line input

• terminators – list of characters that terminate a command. These are mainly intended
for terminating multiline commands, but will also terminate single-line commands. If not
supplied, the default is a semicolon. If your app only contains single-line commands and
you want terminators to be treated as literals by the parser, then set this to an empty list.

• shortcuts – dictionary containing shortcuts for commands. If not supplied, then de-
faults to constants.DEFAULT_SHORTCUTS. If you do not want any shortcuts, pass an
empty dictionary.

• command_sets – Provide CommandSet instances to load during cmd2 initialization.
This allows CommandSets with custom constructor parameters to be loaded. This also
allows the a set of CommandSets to be provided when auto_load_commands is set to
False

• auto_load_commands – If True, cmd2 will check for all subclasses of CommandSet
that are currently loaded by Python and automatically instantiate and register all com-
mands. If False, CommandSets must be manually installed with register_command_set.

90 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

default_error
The error message displayed when a non-existent command is run. Default: {} is not a
recognized command, alias, or macro

help_error
The error message displayed to the user when they request help for a command with no help defined.
Default: No help on {}

prompt
The prompt issued to solicit input. The default value is (Cmd). See Prompt for more information.

continuation_prompt
The prompt issued to solicit input for the 2nd and subsequent lines of a multiline command Default: >.

echo
If True, output the prompt and user input before executing the command. When redirecting a series of
commands to an output file, this allows you to see the command in the output.

settable
This dictionary contains the name and description of all settings available to users.

Users use the set command to view and modify settings. Settings are stored in instance attributes with the
same name as the setting.

history
A record of previously entered commands.

This attribute is an instance of cmd2.history.History , and each command is an instance of cmd2.
Statement.

statement_parser
An instance of cmd2.parsing.StatementParser initialized and configured appropriately for pars-
ing user input.

intro
Set an introduction message which is displayed to the user before the Command Processing Loop begins.

py_bridge_name
The symbol name which Python Scripts run using the run_pyscript command can use to reference the
parent cmd2 application.

ALPHABETICAL_SORT_KEY()→ str
Normalize and casefold Unicode strings for saner comparisons.

Parameters astr – input unicode string

Returns a normalized and case-folded version of the input string

NATURAL_SORT_KEY()→ List[Union[int, str]]
Converts a string into a list of integers and strings to support natural sorting (see natural_sort).

For example: natural_keys(‘abc123def’) -> [‘abc’, ‘123’, ‘def’] :param input_str: string to convert :return:
list of strings and integers

add_settable(settable: cmd2.utils.Settable)→ None
Convenience method to add a settable parameter to self.settables

Parameters settable – Settable object being added

aliases
Read-only property to access the aliases stored in the StatementParser

allow_style
Read-only property needed to support do_set when it reads allow_style

7.1. API Reference 91

cmd2 Documentation, Release 1.3

async_alert(alert_msg: str, new_prompt: Optional[str] = None)→ None
Display an important message to the user while they are at a command line prompt. To the user it appears
as if an alert message is printed above the prompt and their current input text and cursor location is left
alone.

Raises a RuntimeError if called while another thread holds terminal_lock.

IMPORTANT: This function will not print an alert unless it can acquire self.terminal_lock to ensure
a prompt is onscreen. Therefore it is best to acquire the lock before calling this function to guarantee
the alert prints and to avoid raising a RuntimeError.

Parameters

• alert_msg – the message to display to the user

• new_prompt – if you also want to change the prompt that is displayed, then include it
here see async_update_prompt() docstring for guidance on updating a prompt

async_update_prompt(new_prompt: str)→ None
Update the command line prompt while the user is still typing at it. This is good for alerting the user to
system changes dynamically in between commands. For instance you could alter the color of the prompt
to indicate a system status or increase a counter to report an event. If you do alter the actual text of the
prompt, it is best to keep the prompt the same width as what’s on screen. Otherwise the user’s input text
will be shifted and the update will not be seamless.

Raises a RuntimeError if called while another thread holds terminal_lock.

IMPORTANT: This function will not update the prompt unless it can acquire self.terminal_lock to ensure
a prompt is onscreen. Therefore it is best to acquire the lock before calling this function to guarantee
the prompt changes and to avoid raising a RuntimeError.

If user is at a continuation prompt while entering a multiline command, the onscreen prompt will not
change. However self.prompt will still be updated and display immediately after the multiline line
command completes.

Parameters new_prompt – what to change the prompt to

build_settables()
Create the dictionary of user-settable parameters

cmd_func(command: str)→ Optional[Callable]
Get the function for a command

Parameters command – the name of the command

Example

>>> helpfunc = self.cmd_func('help')

helpfunc now contains a reference to the do_help method

cmdloop(intro: Optional[str] = None)→ int
This is an outer wrapper around _cmdloop() which deals with extra features provided by cmd2.

_cmdloop() provides the main loop equivalent to cmd.cmdloop(). This is a wrapper around that which
deals with the following extra features provided by cmd2: - transcript testing - intro banner - exit code

Parameters intro – if provided this overrides self.intro and serves as the intro banner printed
once at start

92 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

complete(text: str, state: int)→ Optional[str]
Override of cmd2’s complete method which returns the next possible completion for ‘text’

This completer function is called by readline as complete(text, state), for state in 0, 1, 2, . . . , until it returns
a non-string value. It should return the next possible completion starting with text.

Since readline suppresses any exception raised in completer functions, they can be difficult to debug.
Therefore this function wraps the actual tab completion logic and prints to stderr any exception that occurs
before returning control to readline.

Parameters

• text – the current word that user is typing

• state – non-negative integer

Returns the next possible completion for text or None

complete_help_command(text: str, line: str, begidx: int, endidx: int)→ List[str]
Completes the command argument of help

complete_help_subcommands(text: str, line: str, begidx: int, endidx: int, arg_tokens: Dict[str,
List[str]])→ List[str]

Completes the subcommands argument of help

complete_set_value(text: str, line: str, begidx: int, endidx: int, arg_tokens: Dict[str, List[str]])→
List[str]

Completes the value argument of set

default(statement: cmd2.parsing.Statement)→ Optional[bool]
Executed when the command given isn’t a recognized command implemented by a do_* method.

Parameters statement – Statement object with parsed input

delimiter_complete(text: str, line: str, begidx: int, endidx: int, match_against: Iterable[T_co],
delimiter: str)→ List[str]

Performs tab completion against a list but each match is split on a delimiter and only the portion of the
match being tab completed is shown as the completion suggestions. This is useful if you match against
strings that are hierarchical in nature and have a common delimiter.

An easy way to illustrate this concept is path completion since paths are just directories/files delimited by
a slash. If you are tab completing items in /home/user you don’t get the following as suggestions:

/home/user/file.txt /home/user/program.c /home/user/maps/ /home/user/cmd2.py

Instead you are shown:

file.txt program.c maps/ cmd2.py

For a large set of data, this can be visually more pleasing and easier to search.

Another example would be strings formatted with the following syntax: company::department::name In
this case the delimiter would be :: and the user could easily narrow down what they are looking for if they
were only shown suggestions in the category they are at in the string.

Parameters

• text – the string prefix we are attempting to match (all matches must begin with it)

• line – the current input line with leading whitespace removed

• begidx – the beginning index of the prefix text

• endidx – the ending index of the prefix text

• match_against – the list being matched against

7.1. API Reference 93

cmd2 Documentation, Release 1.3

• delimiter – what delimits each portion of the matches (ex: paths are delimited by a
slash)

Returns a list of possible tab completions

disable_category(category: str, message_to_print: str)→ None
Disable an entire category of commands.

Parameters

• category – the category to disable

• message_to_print – what to print when anything in this category is run or help is
called on it while disabled. The variable COMMAND_NAME can be used as a place-
holder for the name of the command being disabled. ex: message_to_print = “{} is cur-
rently disabled”.format(COMMAND_NAME)

disable_command(command: str, message_to_print: str)→ None
Disable a command and overwrite its functions

Parameters

• command – the command being disabled

• message_to_print – what to print when this command is run or help is called on it
while disabled

The variable COMMAND_NAME can be used as a placeholder for the name
of the command being disabled. ex: message_to_print = “{} is currently dis-
abled”.format(COMMAND_NAME)

do__relative_run_script(args: argparse.Namespace)→ Optional[bool]
Run commands in script file that is encoded as either ASCII or UTF-8 text

Script should contain one command per line, just like the command would be typed in the console.

If the -t/–transcript flag is used, this command instead records the output of the script commands to a
transcript for testing purposes.

If this is called from within an already-running script, the filename will be interpreted relative to the
already-running script’s directory.

do_alias(args: argparse.Namespace)→ None
Manage aliases

An alias is a command that enables replacement of a word by another string.

do_edit(args: argparse.Namespace)→ None
Run a text editor and optionally open a file with it

The editor used is determined by a settable parameter. To set it:

set editor (program-name)

do_eof(_: argparse.Namespace)→ bool
Called when <Ctrl>-D is pressed

do_help(args: argparse.Namespace)→ None
List available commands or provide detailed help for a specific command

do_history(args: argparse.Namespace)→ Optional[bool]
View, run, edit, save, or clear previously entered commands

do_macro(args: argparse.Namespace)→ None
Manage macros

94 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

A macro is similar to an alias, but it can contain argument placeholders.

do_py(args: argparse.Namespace, *, pyscript: Optional[str] = None)→ Optional[bool]
Invoke Python command or shell

Note that, when invoking a command directly from the command line, this shell has limited ability to parse
Python statements into tokens. In particular, there may be problems with whitespace and quotes depending
on their placement.

If you see strange parsing behavior, it’s best to just open the Python shell by providing no arguments to py
and run more complex statements there.

do_quit(_: argparse.Namespace)→ bool
Exit this application

do_run_pyscript(args: argparse.Namespace)→ Optional[bool]
Run a Python script file inside the console

do_run_script(args: argparse.Namespace)→ Optional[bool]
Run commands in script file that is encoded as either ASCII or UTF-8 text

Script should contain one command per line, just like the command would be typed in the console.

If the -t/–transcript flag is used, this command instead records the output of the script commands to a
transcript for testing purposes.

do_set(args: argparse.Namespace)→ None
Set a settable parameter or show current settings of parameters

do_shell(args: argparse.Namespace)→ None
Execute a command as if at the OS prompt

do_shortcuts(_: argparse.Namespace)→ None
List available shortcuts

enable_category(category: str)→ None
Enable an entire category of commands

Parameters category – the category to enable

enable_command(command: str)→ None
Enable a command by restoring its functions

Parameters command – the command being enabled

find_commandset_for_command(command_name: str) → Op-
tional[cmd2.command_definition.CommandSet]

Finds the CommandSet that registered the command name :param command_name: command name to
search :return: CommandSet that provided the command

find_commandsets(commandset_type: Type[cmd2.command_definition.CommandSet], *, sub-
class_match: bool = False)→ List[cmd2.command_definition.CommandSet]

Find all CommandSets that match the provided CommandSet type. By default, locates a CommandSet
that is an exact type match but may optionally return all CommandSets that are sub-classes of the pro-
vided type :param commandset_type: CommandSet sub-class type to search for :param subclass_match:
If True, return all sub-classes of provided type, otherwise only search for exact match :return: Matching
CommandSets

flag_based_complete(text: str, line: str, begidx: int, endidx: int, flag_dict: Dict[str,
Union[Iterable[T_co], Callable]], *, all_else: Union[None, Iterable[T_co],
Callable] = None)→ List[str]

Tab completes based on a particular flag preceding the token being completed.

Parameters

7.1. API Reference 95

cmd2 Documentation, Release 1.3

• text – the string prefix we are attempting to match (all matches must begin with it)

• line – the current input line with leading whitespace removed

• begidx – the beginning index of the prefix text

• endidx – the ending index of the prefix text

• flag_dict – dictionary whose structure is the following: keys - flags (ex: -c, –create)
that result in tab completion for the next argument in the command line values - there are
two types of values: 1. iterable list of strings to match against (dictionaries, lists, etc.) 2.
function that performs tab completion (ex: path_complete)

• all_else – an optional parameter for tab completing any token that isn’t preceded by a
flag in flag_dict

Returns a list of possible tab completions

get_all_commands()→ List[str]
Return a list of all commands

get_help_topics()→ List[str]
Return a list of help topics

get_names()
Return an alphabetized list of names comprising the attributes of the cmd2 class instance.

get_visible_commands()→ List[str]
Return a list of commands that have not been hidden or disabled

in_pyscript()→ bool
Return whether a pyscript is running

in_script()→ bool
Return whether a text script is running

index_based_complete(text: str, line: str, begidx: int, endidx: int, index_dict: Map-
ping[int, Union[Iterable[T_co], Callable]], *, all_else: Union[None, It-
erable[T_co], Callable] = None)→ List[str]

Tab completes based on a fixed position in the input string.

Parameters

• text – the string prefix we are attempting to match (all matches must begin with it)

• line – the current input line with leading whitespace removed

• begidx – the beginning index of the prefix text

• endidx – the ending index of the prefix text

• index_dict – dictionary whose structure is the following: keys - 0-based token indexes
into command line that determine which tokens perform tab completion values - there are
two types of values: 1. iterable list of strings to match against (dictionaries, lists, etc.) 2.
function that performs tab completion (ex: path_complete)

• all_else – an optional parameter for tab completing any token that isn’t at an index in
index_dict

Returns a list of possible tab completions

onecmd(statement: Union[cmd2.parsing.Statement, str], *, add_to_history: bool = True)→ bool
This executes the actual do_* method for a command.

If the command provided doesn’t exist, then it executes default() instead.

96 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

Parameters

• statement – intended to be a Statement instance parsed command from the input
stream, alternative acceptance of a str is present only for backward compatibility with
cmd

• add_to_history – If True, then add this command to history. Defaults to True.

Returns a flag indicating whether the interpretation of commands should stop

onecmd_plus_hooks(line: str, *, add_to_history: bool = True, raise_keyboard_interrupt: bool =
False, py_bridge_call: bool = False)→ bool

Top-level function called by cmdloop() to handle parsing a line and running the command and all of its
hooks.

Parameters

• line – command line to run

• add_to_history – If True, then add this command to history. Defaults to True.

• raise_keyboard_interrupt – if True, then KeyboardInterrupt exceptions will be
raised if stop isn’t already True. This is used when running commands in a loop to be able
to stop the whole loop and not just the current command. Defaults to False.

• py_bridge_call – This should only ever be set to True by PyBridge to signify the
beginning of an app() call from Python. It is used to enable/disable the storage of the
command’s stdout.

Returns True if running of commands should stop

parseline(line: str)→ Tuple[str, str, str]
Parse the line into a command name and a string containing the arguments.

NOTE: This is an override of a parent class method. It is only used by other parent class methods.

Different from the parent class method, this ignores self.identchars.

Parameters line – line read by readline

Returns tuple containing (command, args, line)

path_complete(text: str, line: str, begidx: int, endidx: int, *, path_filter: Optional[Callable[[str],
bool]] = None)→ List[str]

Performs completion of local file system paths

Parameters

• text – the string prefix we are attempting to match (all matches must begin with it)

• line – the current input line with leading whitespace removed

• begidx – the beginning index of the prefix text

• endidx – the ending index of the prefix text

• path_filter – optional filter function that determines if a path belongs in the results
this function takes a path as its argument and returns True if the path should be kept in the
results

Returns a list of possible tab completions

perror(msg: Any = ”, *, end: str = ’\n’, apply_style: bool = True)→ None
Print message to sys.stderr

Parameters

7.1. API Reference 97

cmd2 Documentation, Release 1.3

• msg – message to print (anything convertible to a str with ‘{}’.format() is OK)

• end – string appended after the end of the message, default a newline

• apply_style – If True, then ansi.style_error will be applied to the message text. Set to
False in cases where the message text already has the desired style. Defaults to True.

pexcept(msg: Any, *, end: str = ’\n’, apply_style: bool = True)→ None
Print Exception message to sys.stderr. If debug is true, print exception traceback if one exists.

Parameters

• msg – message or Exception to print

• end – string appended after the end of the message, default a newline

• apply_style – If True, then ansi.style_error will be applied to the message text. Set to
False in cases where the message text already has the desired style. Defaults to True.

pfeedback(msg: Any, *, end: str = ’\n’)→ None
For printing nonessential feedback. Can be silenced with quiet. Inclusion in redirected output is controlled
by feedback_to_output.

Parameters

• msg – message to print (anything convertible to a str with ‘{}’.format() is OK)

• end – string appended after the end of the message, default a newline

postcmd(stop: bool, statement: cmd2.parsing.Statement)→ bool
Hook method executed just after a command is executed by onecmd().

Parameters

• stop – return True to request the command loop terminate

• statement – subclass of str which also contains the parsed input

See register_postcmd_hook() and register_cmdfinalization_hook() for more robust
ways to run hooks after the command is executed. See Postcommand Hooks and Command Finalization
Hooks for more information.

postloop()
Hook method executed once when the cmdloop() method is about to return.

See register_postloop_hook() for a more robust way to run hooks after the command loop com-
pletes. See Application Lifecycle Hooks for more information.

poutput(msg: Any = ”, *, end: str = ’\n’)→ None
Print message to self.stdout and appends a newline by default

Also handles BrokenPipeError exceptions for when a command’s output has been piped to another process
and that process terminates before the cmd2 command is finished executing.

Parameters

• msg – message to print (anything convertible to a str with ‘{}’.format() is OK)

• end – string appended after the end of the message, default a newline

ppaged(msg: Any, *, end: str = ’\n’, chop: bool = False)→ None
Print output using a pager if it would go off screen and stdout isn’t currently being redirected.

Never uses a pager inside of a script (Python or text) or when output is being redirected or piped or when
stdout or stdin are not a fully functional terminal.

Parameters

98 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

• msg – message to print to current stdout (anything convertible to a str with ‘{}’.format()
is OK)

• end – string appended after the end of the message, default a newline

• chop –

True -> causes lines longer than the screen width to be chopped (truncated) rather than wrapped

– truncated text is still accessible by scrolling with the right & left arrow keys

– chopping is ideal for displaying wide tabular data as is done in utilities like pgcli

False -> causes lines longer than the screen width to wrap to the next line

– wrapping is ideal when you want to keep users from having to use horizontal scrolling

WARNING: On Windows, the text always wraps regardless of what the chop argument is set to

precmd(statement: cmd2.parsing.Statement)→ cmd2.parsing.Statement
Hook method executed just before the command is executed by onecmd() and after adding it to history.

Parameters statement – subclass of str which also contains the parsed input

Returns a potentially modified version of the input Statement object

See register_postparsing_hook() and register_precmd_hook() for more robust ways
to run hooks before the command is executed. See Postparsing Hooks and Precommand Hooks for more
information.

preloop()
Hook method executed once when the cmdloop() method is called.

See register_preloop_hook() for a more robust way to run hooks before the command loop
begins. See Application Lifecycle Hooks for more information.

pwarning(msg: Any = ”, *, end: str = ’\n’, apply_style: bool = True)→ None
Wraps perror, but applies ansi.style_warning by default

Parameters

• msg – message to print (anything convertible to a str with ‘{}’.format() is OK)

• end – string appended after the end of the message, default a newline

• apply_style – If True, then ansi.style_warning will be applied to the message text.
Set to False in cases where the message text already has the desired style. Defaults to
True.

read_input(prompt: str, *, allow_completion: bool = False)→ str
Read input from appropriate stdin value. Also allows you to disable tab completion while input is being
read.

Parameters

• prompt – prompt to display to user

• allow_completion – if True, then tab completion of commands is enabled. This
generally should be set to False unless reading the command line. Defaults to False.

Returns the line read from stdin with all trailing new lines removed

Raises any exceptions raised by input() and stdin.readline()

7.1. API Reference 99

cmd2 Documentation, Release 1.3

register_cmdfinalization_hook(func: Callable[[cmd2.plugin.CommandFinalizationData],
cmd2.plugin.CommandFinalizationData])→ None

Register a hook to be called after a command is completed, whether it completes successfully or not.

register_command_set(cmdset: cmd2.command_definition.CommandSet)→ None
Installs a CommandSet, loading all commands defined in the CommandSet

Parameters cmdset – CommandSet to load

register_postcmd_hook(func: Callable[[cmd2.plugin.PostcommandData],
cmd2.plugin.PostcommandData])→ None

Register a hook to be called after the command function.

register_postloop_hook(func: Callable[[None], None])→ None
Register a function to be called at the end of the command loop.

register_postparsing_hook(func: Callable[[cmd2.plugin.PostparsingData],
cmd2.plugin.PostparsingData])→ None

Register a function to be called after parsing user input but before running the command

register_precmd_hook(func: Callable[[cmd2.plugin.PrecommandData],
cmd2.plugin.PrecommandData])→ None

Register a hook to be called before the command function.

register_preloop_hook(func: Callable[[None], None])→ None
Register a function to be called at the beginning of the command loop.

remove_settable(name: str)→ None
Convenience method for removing a settable parameter from self.settables

Parameters name – name of the settable being removed

Raises KeyError if the Settable matches this name

runcmds_plus_hooks(cmds: List[Union[cmd2.history.HistoryItem, str]], *, add_to_history: bool
= True, stop_on_keyboard_interrupt: bool = True)→ bool

Used when commands are being run in an automated fashion like text scripts or history replays. The
prompt and command line for each command will be printed if echo is True.

Parameters

• cmds – commands to run

• add_to_history – If True, then add these commands to history. Defaults to True.

• stop_on_keyboard_interrupt – stop command loop if Ctrl-C is pressed in-
stead of just moving to the next command. Defaults to True.

Returns True if running of commands should stop

select(opts: Union[str, List[str], List[Tuple[Any, Optional[str]]]], prompt: str = ’Your choice? ’) →
str

Presents a numbered menu to the user. Modeled after the bash shell’s SELECT. Returns the item chosen.

Argument opts can be:

a single string -> will be split into one-word options
a list of strings -> will be offered as options
a list of tuples -> interpreted as (value, text), so that the return value can differ from the text
advertised to the user

set_window_title(title: str)→ None
Set the terminal window title.

Raises a RuntimeError if called while another thread holds terminal_lock.

100 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

IMPORTANT: This function will not set the title unless it can acquire self.terminal_lock to avoid writing
to stderr while a command is running. Therefore it is best to acquire the lock before calling this
function to guarantee the title changes and to avoid raising a RuntimeError.

Parameters title – the new window title

shell_cmd_complete(text: str, line: str, begidx: int, endidx: int, *, complete_blank: bool = False)
→ List[str]

Performs completion of executables either in a user’s path or a given path

Parameters

• text – the string prefix we are attempting to match (all matches must begin with it)

• line – the current input line with leading whitespace removed

• begidx – the beginning index of the prefix text

• endidx – the ending index of the prefix text

• complete_blank – If True, then a blank will complete all shell commands in a
user’s path. If False, then no completion is performed. Defaults to False to match
Bash shell behavior.

Returns a list of possible tab completions

sigint_handler(signum: int, frame)→ None
Signal handler for SIGINTs which typically come from Ctrl-C events.

If you need custom SIGINT behavior, then override this function.

Parameters

• signum – signal number

• frame – required param for signal handlers

tokens_for_completion(line: str, begidx: int, endidx: int)→ Tuple[List[str], List[str]]
Used by tab completion functions to get all tokens through the one being completed.

Parameters

• line – the current input line with leading whitespace removed

• begidx – the beginning index of the prefix text

• endidx – the ending index of the prefix text

Returns A 2 item tuple where the items are On Success - tokens: list of unquoted tokens -
this is generally the list needed for tab completion functions - raw_tokens: list of tokens
with any quotes preserved = this can be used to know if a token was quoted or is missing
a closing quote Both lists are guaranteed to have at least 1 item. The last item in both lists
is the token being tab completed On Failure - Two empty lists

unregister_command_set(cmdset: cmd2.command_definition.CommandSet)
Uninstalls a CommandSet and unloads all associated commands :param cmdset: CommandSet to uninstall

visible_prompt
Read-only property to get the visible prompt with any ANSI style escape codes stripped.

Used by transcript testing to make it easier and more reliable when users are doing things like coloring
the prompt using ANSI color codes.

Returns prompt stripped of any ANSI escape codes

7.1. API Reference 101

cmd2 Documentation, Release 1.3

7.1.2 cmd2.ansi

Support for ANSI escape sequences which are used for things like applying style to text, setting the window title, and
asynchronous alerts.

cmd2.ansi.BG_RESET = '\x1b[49m'
ANSI sequence to reset the terminal background attributes

class cmd2.ansi.ColorBase
Base class used for defining color enums. See fg and bg classes for examples.

Child classes should define enums in the follow structure:

key: color name (e.g. black)

value: anything that when cast to a string returns an ANSI sequence

cmd2.ansi.FG_RESET = '\x1b[39m'
ANSI sequence to reset the foreground attributes

cmd2.ansi.INTENSITY_BRIGHT = '\x1b[1m'
ANSI sequence to make the text bright

cmd2.ansi.INTENSITY_DIM = '\x1b[2m'
ANSI sequence to make the text dim

cmd2.ansi.INTENSITY_NORMAL = '\x1b[22m'
ANSI sequence to make the text normal

cmd2.ansi.RESET_ALL = '\x1b[0m'
ANSI sequence to reset all terminal attributes

cmd2.ansi.STYLE_ALWAYS = 'Always'
Constant for cmd2.ansi.allow_style to indicate ANSI style sequences should always be output.

cmd2.ansi.STYLE_NEVER = 'Never'
Constant for cmd2.ansi.allow_style to indicate ANSI style sequences should be removed from all out-
put.

cmd2.ansi.STYLE_TERMINAL = 'Terminal'
Constant for cmd2.ansi.allow_style to indicate ANSI style sequences should be removed if the output
is not going to the terminal.

cmd2.ansi.UNDERLINE_DISABLE = '\x1b[24m'
ANSI sequence to turn off underline

cmd2.ansi.UNDERLINE_ENABLE = '\x1b[4m'
ANSI sequence to turn on underline

cmd2.ansi.allow_style = 'Terminal'
When using outside of a cmd2 app, set this variable to one of:

• STYLE_NEVER - remove ANSI style sequences from all output

• STYLE_TERMINAL - remove ANSI style sequences if the output is not going to the terminal

• STYLE_ALWAYS - always output ANSI style sequences

to control the output of ANSI style sequences by methods in this module.

The default is STYLE_TERMINAL.

cmd2.ansi.async_alert_str(*, terminal_columns: int, prompt: str, line: str, cursor_offset: int,
alert_msg: str)→ str

Calculate the desired string, including ANSI escape codes, for displaying an asynchronous alert message.

102 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

Parameters

• terminal_columns – terminal width (number of columns)

• prompt – prompt that is displayed on the current line

• line – current contents of the Readline line buffer

• cursor_offset – the offset of the current cursor position within line

• alert_msg – the message to display to the user

Returns the correct string so that the alert message appears to the user to be printed above the
current line.

class cmd2.ansi.bg
Enum class for background colors

cmd2.ansi.bg_lookup(bg_name: Union[str, cmd2.ansi.bg])→ str
Look up ANSI escape codes based on background color name.

Parameters bg_name – background color name or enum to look up ANSI escape code(s) for

Returns ANSI escape code(s) associated with this color

Raises ValueError: if the color cannot be found

class cmd2.ansi.fg
Enum class for foreground colors

cmd2.ansi.fg_lookup(fg_name: Union[str, cmd2.ansi.fg])→ str
Look up ANSI escape codes based on foreground color name.

Parameters fg_name – foreground color name or enum to look up ANSI escape code(s) for

Returns ANSI escape code(s) associated with this color

Raises ValueError: if the color cannot be found

cmd2.ansi.set_title_str(title: str)→ str
Get the required string, including ANSI escape codes, for setting window title for the terminal.

Parameters title – new title for the window

Returns string to write to sys.stderr in order to set the window title to the desired test

cmd2.ansi.strip_style(text: str)→ str
Strip ANSI style sequences from a string.

Parameters text – string which may contain ANSI style sequences

Returns the same string with any ANSI style sequences removed

cmd2.ansi.style(text: Any, *, fg: Union[str, cmd2.ansi.fg] = ”, bg: Union[str, cmd2.ansi.bg] = ”, bold:
bool = False, dim: bool = False, underline: bool = False)→ str

Apply ANSI colors and/or styles to a string and return it. The styling is self contained which means that at the
end of the string reset code(s) are issued to undo whatever styling was done at the beginning.

Parameters

• text – Any object compatible with str.format()

• fg – foreground color. Relies on fg_lookup() to retrieve ANSI escape based on name or
enum. Defaults to no color.

• bg – background color. Relies on bg_lookup() to retrieve ANSI escape based on name or
enum. Defaults to no color.

7.1. API Reference 103

cmd2 Documentation, Release 1.3

• bold – apply the bold style if True. Can be combined with dim. Defaults to False.

• dim – apply the dim style if True. Can be combined with bold. Defaults to False.

• underline – apply the underline style if True. Defaults to False.

Returns the stylized string

cmd2.ansi.style_aware_wcswidth(text: str)→ int
Wrap wcswidth to make it compatible with strings that contains ANSI style sequences

Parameters text – the string being measured

Returns the width of the string when printed to the terminal

cmd2.ansi.style_aware_write(fileobj: IO, msg: str)→ None
Write a string to a fileobject and strip its ANSI style sequences if required by allow_style setting

Parameters

• fileobj – the file object being written to

• msg – the string being written

cmd2.ansi.style_error(text: Any, *, fg: Union[str, cmd2.ansi.fg] = <fg.bright_red: ’\x1b[91m’>,
bg: Union[str, cmd2.ansi.bg] = ”, bold: bool = False, dim: bool = False,
underline: bool = False)→ str

Partial function supplying arguments to cmd2.ansi.style() which colors text to signify an error

cmd2.ansi.style_success(text: Any, *, fg: Union[str, cmd2.ansi.fg] = <fg.green: ’\x1b[32m’>, bg:
Union[str, cmd2.ansi.bg] = ”, bold: bool = False, dim: bool = False, un-
derline: bool = False)→ str

Partial function supplying arguments to cmd2.ansi.style() which colors text to signify success

cmd2.ansi.style_warning(text: Any, *, fg: Union[str, cmd2.ansi.fg] = <fg.bright_yellow:
’\x1b[93m’>, bg: Union[str, cmd2.ansi.bg] = ”, bold: bool = False, dim:
bool = False, underline: bool = False)→ str

Partial function supplying arguments to cmd2.ansi.style() which colors text to signify a warning

7.1.3 cmd2.argparse_completer

This module defines the ArgparseCompleter class which provides argparse-based tab completion to cmd2 apps. See
the header of argparse_custom.py for instructions on how to use these features.

class cmd2.argparse_completer.ArgparseCompleter(parser: argparse.ArgumentParser,
cmd2_app: cmd2.cmd2.Cmd, *,
parent_tokens: Optional[Dict[str,
List[str]]] = None)

Automatic command line tab completion based on argparse parameters

complete_command(tokens: List[str], text: str, line: str, begidx: int, endidx: int, *, cmd_set: Op-
tional[cmd2.command_definition.CommandSet] = None)→ List[str]

Complete the command using the argparse metadata and provided argument dictionary :raises: Comple-
tionError for various types of tab completion errors

complete_subcommand_help(tokens: List[str], text: str, line: str, begidx: int, endidx: int) →
List[str]

Supports cmd2’s help command in the completion of subcommand names :param tokens: command line
tokens :param text: the string prefix we are attempting to match (all matches must begin with it) :param
line: the current input line with leading whitespace removed :param begidx: the beginning index of the
prefix text :param endidx: the ending index of the prefix text :return: List of subcommand completions

104 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

format_help(tokens: List[str])→ str
Supports cmd2’s help command in the retrieval of help text :param tokens: command line tokens :return:
help text of the command being queried

7.1.4 cmd2.argparse_custom

This module adds capabilities to argparse by patching a few of its functions. It also defines a parser class called
Cmd2ArgumentParser which improves error and help output over normal argparse. All cmd2 code uses this parser
and it is recommended that developers of cmd2-based apps either use it or write their own parser that inherits from it.
This will give a consistent look-and-feel between the help/error output of built-in cmd2 commands and the app-specific
commands. If you wish to override the parser used by cmd2’s built-in commands, see override_parser.py example.

Since the new capabilities are added by patching at the argparse API level, they are available whether or not
Cmd2ArgumentParser is used. However, the help and error output of Cmd2ArgumentParser is customized to notate
nargs ranges whereas any other parser class won’t be as explicit in their output.

Added capabilities

Extends argparse nargs functionality by allowing tuples which specify a range (min, max). To specify a max value
with no upper bound, use a 1-item tuple (min,)

Example:

-f argument expects at least 3 values
parser.add_argument('-f', nargs=(3,))

-f argument expects 3 to 5 values
parser.add_argument('-f', nargs=(3, 5))

Tab Completion

cmd2 uses its ArgparseCompleter class to enable argparse-based tab completion on all commands that use the
@with_argparse wrappers. Out of the box you get tab completion of commands, subcommands, and flag names,
as well as instructive hints about the current argument that print when tab is pressed. In addition, you can add tab
completion for each argument’s values using parameters passed to add_argument().

Below are the 5 add_argument() parameters for enabling tab completion of an argument’s value. Only one can be used
at a time.

choices - pass a list of values to the choices parameter.

Example:

parser.add_argument('-o', '--options', choices=['An Option', 'SomeOtherOption
→˓'])
parser.add_argument('-o', '--options', choices=my_list)

choices_function - pass a function that returns choices. This is good in cases where the choice list is dynamically
generated when the user hits tab.

Example:

def my_choices_function():
...
return my_generated_list

parser.add_argument('-o', '--options', choices_function=my_choices_function)

7.1. API Reference 105

cmd2 Documentation, Release 1.3

choices_method - this is equivalent to choices_function, but the function needs to be an instance method of a
cmd2.Cmd or cmd2.CommandSet subclass. When ArgparseCompleter calls the method, it well detect whether is is
bound to a CommandSet or Cmd subclass. If bound to a cmd2.Cmd subclass, it will pass the app instance as the self
argument. This is good in cases where the list of choices being generated relies on state data of the cmd2-based app.
If bound to a cmd2.CommandSet subclass, it will pass the CommandSet instance as the self argument.

Example:

def my_choices_method(self):
...
return my_generated_list

parser.add_argument("arg", choices_method=my_choices_method)

completer_function - pass a tab completion function that does custom completion. Since custom tab completion
operations commonly need to modify cmd2’s instance variables related to tab completion, it will be rare to need a
completer function. completer_method should be used in those cases.

Example:

def my_completer_function(text, line, begidx, endidx):
...
return completions

parser.add_argument('-o', '--options', completer_function=my_completer_
→˓function)

completer_method - this is equivalent to completer_function, but the function needs to be an instance method of
a cmd2.Cmd or cmd2.CommandSet subclass. When ArgparseCompleter calls the method, it well detect whether is is
bound to a CommandSet or Cmd subclass. If bound to a cmd2.Cmd subclass, it will pass the app instance as the self
argument. This is good in cases where the list of choices being generated relies on state data of the cmd2-based app.
If bound to a cmd2.CommandSet subclass, it will pass the CommandSet instance as the self argument, and the app
instance as the positional argument. cmd2 provides a few completer methods for convenience (e.g., path_complete,
delimiter_complete)

Example:

This adds file-path completion to an argument
parser.add_argument('-o', '--options', completer_method=cmd2.Cmd.path_
→˓complete)

You can use functools.partial() to prepopulate values of the underlying choices and completer func-
tions/methods.

Example:

This says to call path_complete with a preset value for its path_filter
→˓argument
completer_method = functools.partial(path_complete,

path_filter=lambda path: os.path.
→˓isdir(path))
parser.add_argument('-o', '--options', choices_method=completer_method)

Of the 5 tab completion parameters, choices is the only one where argparse validates user input against items in the
choices list. This is because the other 4 parameters are meant to tab complete data sets that are viewed as dynamic.
Therefore it is up to the developer to validate if the user has typed an acceptable value for these arguments.

The following functions exist in cases where you may want to manually add a choice-providing function/method to an
existing argparse action. For instance, in __init__() of a custom action class.

106 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

• set_choices_function(action, func)

• set_choices_method(action, method)

• set_completer_function(action, func)

• set_completer_method(action, method)

There are times when what’s being tab completed is determined by a previous argument on the command line. In theses
cases, Autocompleter can pass a dictionary that maps the command line tokens up through the one being completed
to their argparse argument name. To receive this dictionary, your choices/completer function should have an argument
called arg_tokens.

Example:

def my_choices_method(self, arg_tokens)
def my_completer_method(self, text, line, begidx, endidx, arg_tokens)

All values of the arg_tokens dictionary are lists, even if a particular argument expects only 1 token. Since ArgparseC-
ompleter is for tab completion, it does not convert the tokens to their actual argument types or validate their values.
All tokens are stored in the dictionary as the raw strings provided on the command line. It is up to the developer to
determine if the user entered the correct argument type (e.g. int) and validate their values.

CompletionItem Class - This class was added to help in cases where uninformative data is being tab completed. For
instance, tab completing ID numbers isn’t very helpful to a user without context. Returning a list of CompletionItems
instead of a regular string for completion results will signal the ArgparseCompleter to output the completion results in
a table of completion tokens with descriptions instead of just a table of tokens:

Instead of this:
1 2 3

The user sees this:
ITEM_ID Item Name
1 My item
2 Another item
3 Yet another item

The left-most column is the actual value being tab completed and its header is that value’s name. The right column
header is defined using the descriptive_header parameter of add_argument(). The right column values come from the
CompletionItem.description value.

Example:

token = 1
token_description = "My Item"
completion_item = CompletionItem(token, token_description)

Since descriptive_header and CompletionItem.description are just strings, you can format them in such a way to have
multiple columns:

ITEM_ID Item Name Checked Out Due Date
1 My item True 02/02/2022
2 Another item False
3 Yet another item False

To use CompletionItems, just return them from your choices or completer functions.

To avoid printing a ton of information to the screen at once when a user presses tab, there is a maximum threshold
for the number of CompletionItems that will be shown. Its value is defined in cmd2.Cmd.max_completion_items.

7.1. API Reference 107

cmd2 Documentation, Release 1.3

It defaults to 50, but can be changed. If the number of completion suggestions exceeds this number, they will be
displayed in the typical columnized format and will not include the description value of the CompletionItems.

Patched argparse functions

argparse._ActionsContainer.add_argument - adds arguments related to tab completion and enables
nargs range parsing. See _add_argument_wrapper for more details on these arguments.

argparse.ArgumentParser._get_nargs_pattern - adds support for nargs ranges. See
_get_nargs_pattern_wrapper for more details.

argparse.ArgumentParser._match_argument - adds support for nargs ranges. See
_match_argument_wrapper for more details.

argparse._SubParsersAction.remove_parser - new function which removes a sub-parser from a sub-
parsers group. See _SubParsersAction_remove_parser for more details.

class cmd2.argparse_custom.ChoicesCallable(is_method: bool, is_completer: bool, to_call:
Callable)

Enables using a callable as the choices provider for an argparse argument. While argparse has the built-in
choices attribute, it is limited to an iterable.

class cmd2.argparse_custom.Cmd2ArgumentParser(prog=None, usage=None, descrip-
tion=None, epilog=None, par-
ents=None, formatter_class=<class
’cmd2.argparse_custom.Cmd2HelpFormatter’>,
prefix_chars=’-’, from-
file_prefix_chars=None, ar-
gument_default=None, con-
flict_handler=’error’, add_help=True,
allow_abbrev=True)

Custom ArgumentParser class that improves error and help output

add_subparsers(**kwargs)
Custom override. Sets a default title if one was not given.

Parameters kwargs – additional keyword arguments

Returns argparse Subparser Action

error(message: str)→ None
Custom override that applies custom formatting to the error message

format_help()→ str
Copy of format_help() from argparse.ArgumentParser with tweaks to separately display required param-
eters

class cmd2.argparse_custom.Cmd2AttributeWrapper(attribute: Any)
Wraps a cmd2-specific attribute added to an argparse Namespace. This makes it easy to know which attributes
in a Namespace are arguments from a parser and which were added by cmd2.

get()→ Any
Get the value of the attribute

set(new_val: Any)→ None
Set the value of the attribute

class cmd2.argparse_custom.Cmd2HelpFormatter(prog, indent_increment=2,
max_help_position=24, width=None)

Custom help formatter to configure ordering of help text

class cmd2.argparse_custom.CompletionItem(value: object, desc: str = ”, *args, **kwargs)
Completion item with descriptive text attached

108 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

See header of this file for more information

cmd2.argparse_custom.DEFAULT_ARGUMENT_PARSER
alias of cmd2.argparse_custom.Cmd2ArgumentParser

cmd2.argparse_custom.generate_range_error(range_min: int, range_max: Union[int, float])
→ str

Generate an error message when the the number of arguments provided is not within the expected range

cmd2.argparse_custom.set_choices_function(action: argparse.Action, choices_function:
Callable)→ None

Set choices_function on an argparse action

cmd2.argparse_custom.set_choices_method(action: argparse.Action, choices_method:
Callable)→ None

Set choices_method on an argparse action

cmd2.argparse_custom.set_completer_function(action: argparse.Action, com-
pleter_function: Callable)→ None

Set completer_function on an argparse action

cmd2.argparse_custom.set_completer_method(action: argparse.Action, completer_method:
Callable)→ None

Set completer_method on an argparse action

cmd2.argparse_custom.set_default_argument_parser(parser:
Type[argparse.ArgumentParser]) →
None

Set the default ArgumentParser class for a cmd2 app

7.1.5 cmd2.constants

This module contains constants used throughout cmd2.

cmd2.constants.DEFAULT_SHORTCUTS
If you do not supply shortcuts to cmd2.Cmd.__init__(), the shortcuts defined here will be used instead.

cmd2.constants.COMMAND_NAME
Used by cmd2.Cmd.disable_command() and cmd2.Cmd.disable_category(). Those methods
allow you to selectively disable single commands or an entire category of commands. Should you want to
include the name of the command in the error message displayed to the user when they try and run a disabled
command, you can include this constant in the message where you would like the name of the command to
appear. cmd2 will replace this constant with the name of the command the user tried to run before displaying
the error message.

This constant is imported into the package namespace; the preferred syntax to import and reference it is:

import cmd2
errmsg = "The {} command is currently disabled.".format(cmd2.COMMAND_NAME)

See src/examples/help_categories.py for an example.

7.1.6 cmd2.command_definition

Supports the definition of commands in separate classes to be composed into cmd2.Cmd

class cmd2.command_definition.CommandSet
Base class for defining sets of commands to load in cmd2.

with_default_category can be used to apply a default category to all commands in the CommandSet.

7.1. API Reference 109

cmd2 Documentation, Release 1.3

do_, help_, and complete_ functions differ only in that self is the CommandSet instead of the cmd2 app

on_register(cmd)→ None
Called by cmd2.Cmd as the first step to registering a CommandSet. The commands defined in this class
have not be added to the CLI object at this point. Subclasses can override this to perform any initialization
requiring access to the Cmd object (e.g. configure commands and their parsers based on CLI state data).

Parameters cmd (cmd2.Cmd) – The cmd2 main application

on_registered()→ None
Called by cmd2.Cmd after a CommandSet is registered and all its commands have been added to the CLI.
Subclasses can override this to perform custom steps related to the newly added commands (e.g. setting
them to a disabled state).

on_unregister()→ None
Called by cmd2.Cmd as the first step to unregistering a CommandSet. Subclasses can override this to
perform any cleanup steps which require their commands being registered in the CLI.

on_unregistered()→ None
Called by cmd2.Cmd after a CommandSet has been unregistered and all its commands removed from the
CLI. Subclasses can override this to perform remaining cleanup steps.

cmd2.command_definition.with_default_category(category: str, *, heritable: bool = True)
Decorator that applies a category to all do_* command methods in a class that do not already have a category
specified.

CommandSets that are decorated by this with heritable set to True (default) will set a class attribute that is
inherited by all subclasses unless overridden. All commands of this CommandSet and all subclasses of this
CommandSet that do not declare an explicit category will be placed in this category. Subclasses may use this
decorator to override the default category.

If heritable is set to False, then only the commands declared locally to this CommandSet will be placed in the
specified category. Dynamically created commands, and commands declared in sub-classes will not receive this
category.

Parameters

• category – category to put all uncategorized commands in

• heritable – Flag whether this default category should apply to sub-classes. Defaults
to True

Returns decorator function

7.1.7 cmd2.decorators

Decorators for cmd2 commands

cmd2.decorators.as_subcommand_to(command: str, subcommand: str, parser: arg-
parse.ArgumentParser, *, help: Optional[str]
= None, aliases: Iterable[str] = None) →
Callable[[argparse.Namespace], Optional[bool]]

Tag this method as a subcommand to an existing argparse decorated command.

Parameters

• command – Command Name. Space-delimited subcommands may optionally be speci-
fied

• subcommand – Subcommand name

• parser – argparse Parser for this subcommand

110 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

• help – Help message for this subcommand which displays in the list of subcommands
of the command we are adding to. This is passed as the help argument to Argument-
Parser.add_subparser().

• aliases – Alternative names for this subcommand. This is passed as the alias argument
to ArgumentParser.add_subparser().

Returns Wrapper function that can receive an argparse.Namespace

cmd2.decorators.with_argparser(parser: argparse.ArgumentParser, *, ns_provider: Op-
tional[Callable[[...], argparse.Namespace]] = None, pre-
serve_quotes: bool = False, with_unknown_args: bool = False)
→ Callable[[argparse.Namespace], Optional[bool]]

A decorator to alter a cmd2 method to populate its args argument by parsing arguments with the given instance
of argparse.ArgumentParser.

Parameters

• parser – unique instance of ArgumentParser

• ns_provider – An optional function that accepts a cmd2.Cmd object as an argument
and returns an argparse.Namespace. This is useful if the Namespace needs to be prepop-
ulated with state data that affects parsing.

• preserve_quotes – if True, then arguments passed to argparse maintain their
quotes

• with_unknown_args – if true, then capture unknown args

Returns function that gets passed argparse-parsed args in a Namespace A cmd2.
argparse_custom.Cmd2AttributeWrapper called cmd2_statement is in-
cluded in the Namespace to provide access to the cmd2.Statement object that was cre-
ated when parsing the command line. This can be useful if the command function needs to
know the command line.

Example

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('-p', '--piglatin', action='store_true', help='atinLay')
>>> parser.add_argument('-s', '--shout', action='store_true', help='N00B
→˓EMULATION MODE')
>>> parser.add_argument('-r', '--repeat', type=int, help='output [n] times')
>>> parser.add_argument('words', nargs='+', help='words to print')
>>>
>>> class MyApp(cmd2.Cmd):
>>> @cmd2.with_argparser(parser, preserve_quotes=True)
>>> def do_argprint(self, args):
>>> "Print the options and argument list this options command was called
→˓with."
>>> self.poutput('args: {!r}'.format(args))

Example with unknown args

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('-p', '--piglatin', action='store_true', help='atinLay')
>>> parser.add_argument('-s', '--shout', action='store_true', help='N00B
→˓EMULATION MODE')
>>> parser.add_argument('-r', '--repeat', type=int, help='output [n] times')
>>>

(continues on next page)

7.1. API Reference 111

cmd2 Documentation, Release 1.3

(continued from previous page)

>>> class MyApp(cmd2.Cmd):
>>> @cmd2.with_argparser(parser, with_unknown_args=True)
>>> def do_argprint(self, args, unknown):
>>> "Print the options and argument list this options command was called
→˓with."
>>> self.poutput('args: {!r}'.format(args))
>>> self.poutput('unknowns: {}'.format(unknown))

cmd2.decorators.with_argparser_and_unknown_args(parser: argparse.ArgumentParser, *,
ns_provider: Optional[Callable[[...],
argparse.Namespace]] = None,
preserve_quotes: bool = False)
→ Callable[[argparse.Namespace,
List[T]], Optional[bool]]

Deprecated decorator. Use with_argparser(parser, with_unknown_args=True) instead.

A decorator to alter a cmd2 method to populate its args argument by parsing arguments with the given instance
of argparse.ArgumentParser, but also returning unknown args as a list.

Parameters

• parser – unique instance of ArgumentParser

• ns_provider – An optional function that accepts a cmd2.Cmd object as an argument
and returns an argparse.Namespace. This is useful if the Namespace needs to be prepop-
ulated with state data that affects parsing.

• preserve_quotes – if True, then arguments passed to argparse maintain their
quotes

Returns function that gets passed argparse-parsed args in a Namespace and a list of un-
known argument strings. A cmd2.argparse_custom.Cmd2AttributeWrapper
called cmd2_statement is included in the Namespace to provide access to the cmd2.
Statement object. that was created when parsing the command line. This can be useful if
the command function needs to know the command line.

Example

>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('-p', '--piglatin', action='store_true', help='atinLay')
>>> parser.add_argument('-s', '--shout', action='store_true', help='N00B
→˓EMULATION MODE')
>>> parser.add_argument('-r', '--repeat', type=int, help='output [n] times')
>>>
>>> class MyApp(cmd2.Cmd):
>>> @cmd2.with_argparser(parser, with_unknown_args=True)
>>> def do_argprint(self, args, unknown):
>>> "Print the options and argument list this options command was called
→˓with."
>>> self.poutput('args: {!r}'.format(args))
>>> self.poutput('unknowns: {}'.format(unknown))

cmd2.decorators.with_argument_list(*args, preserve_quotes: bool = False) →
Callable[[List[T]], Optional[bool]]

A decorator to alter the arguments passed to a do_* method. Default passes a string of whatever the user typed.
With this decorator, the decorated method will receive a list of arguments parsed from user input.

Parameters

112 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

• args – Single-element positional argument list containing do_* method this decorator
is wrapping

• preserve_quotes – if True, then argument quotes will not be stripped

Returns function that gets passed a list of argument strings

Example

>>> class MyApp(cmd2.Cmd):
>>> @cmd2.with_argument_list
>>> def do_echo(self, arglist):
>>> self.poutput(' '.join(arglist)

cmd2.decorators.with_category(category: str)→ Callable
A decorator to apply a category to a do_* command method.

Parameters category – the name of the category in which this command should be grouped
when displaying the list of commands.

Example

>>> class MyApp(cmd2.Cmd):
>>> @cmd2.with_category('Text Functions')
>>> def do_echo(self, args)
>>> self.poutput(args)

For an alternative approach to categorizing commands using a function, see categorize()

7.1.8 cmd2.exceptions

Custom cmd2 exceptions

class cmd2.exceptions.SkipPostcommandHooks
Custom exception class for when a command has a failure bad enough to skip post command hooks, but not bad
enough to print the exception to the user.

class cmd2.exceptions.Cmd2ArgparseError
A SkipPostcommandHooks exception for when a command fails to parse its arguments. Normally argparse
raises a SystemExit exception in these cases. To avoid stopping the command loop, catch the SystemExit and
raise this instead. If you still need to run post command hooks after parsing fails, just return instead of raising
an exception.

class cmd2.exceptions.CommandSetRegistrationError
Exception that can be thrown when an error occurs while a CommandSet is being added or removed from a
cmd2 application.

7.1.9 cmd2.history

Classes for storing the history of previously entered commands.

class cmd2.history.History(seq=())
A list of HistoryItem objects with additional methods for searching and managing the list.

Cmd instantiates this class into the history attribute, and adds commands to it as a user enters them.

See History for information about the built-in command which allows users to view, search, run, and save
previously entered commands.

7.1. API Reference 113

cmd2 Documentation, Release 1.3

Developers interested in accessing previously entered commands can use this class to gain access to the historical
record.

append(new: cmd2.parsing.Statement)→ None
Append a new statement to the end of the History list.

Parameters new – Statement object which will be composed into a HistoryItem and added to
the end of the list

clear()→ None
Remove all items from the History list.

get(index: Union[int, str])→ cmd2.history.HistoryItem
Get item from the History list using 1-based indexing.

Parameters index – optional item to get (index as either integer or string)

Returns a single HistoryItem

regex_search(regex: str, include_persisted: bool = False)→ List[cmd2.history.HistoryItem]
Find history items which match a given regular expression

Parameters

• regex – the regular expression to search for.

• include_persisted – if True, then search full history including persisted history

Returns a list of history items, or an empty list if the string was not found

span(span: str, include_persisted: bool = False)→ List[cmd2.history.HistoryItem]
Return an index or slice of the History list,

Parameters

• span – string containing an index or a slice

• include_persisted – if True, then retrieve full results including from persisted
history

Returns a list of HistoryItems

This method can accommodate input in any of these forms:

a -a a..b or a:b a.. or a: ..a or :a -a.. or -a: ..-a or :-a

Different from native python indexing and slicing of arrays, this method uses 1-based array numbering.
Users who are not programmers can’t grok zero based numbering. Programmers can sometimes grok zero
based numbering. Which reminds me, there are only two hard problems in programming:

• naming

• cache invalidation

• off by one errors

start_session()→ None
Start a new session, thereby setting the next index as the first index in the new session.

str_search(search: str, include_persisted: bool = False)→ List[cmd2.history.HistoryItem]
Find history items which contain a given string

Parameters

• search – the string to search for

• include_persisted – if True, then search full history including persisted history

114 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

Returns a list of history items, or an empty list if the string was not found

truncate(max_length: int)→ None
Truncate the length of the history, dropping the oldest items if necessary

Parameters max_length – the maximum length of the history, if negative, all history items
will be deleted

Returns nothing

class cmd2.history.HistoryItem(statement=None, idx=None)
Class used to represent one command in the history list

statement
The Statement object parsed from user input

idx
The 1-based index of this statement in the history list

expanded
Return the command as run which includes shortcuts and aliases resolved plus any changes made in hooks

Proxy property for self.statement.expanded_command_line

pr(script=False, expanded=False, verbose=False)→ str
Represent this item in a pretty fashion suitable for printing.

If you pass verbose=True, script and expanded will be ignored

Returns pretty print string version of a HistoryItem

raw
The raw input from the user for this item.

Proxy property for self.statement.raw

7.1.10 cmd2.parsing

Classes for parsing and storing user input.

class cmd2.parsing.StatementParser(terminators: Optional[Iterable[str]] = None, mul-
tiline_commands: Optional[Iterable[str]] = None,
aliases: Optional[Dict[str, str]] = None, shortcuts:
Optional[Dict[str, str]] = None)

Parse user input as a string into discrete command components.

__init__(terminators: Optional[Iterable[str]] = None, multiline_commands: Optional[Iterable[str]]
= None, aliases: Optional[Dict[str, str]] = None, shortcuts: Optional[Dict[str, str]] =
None)→ None

Initialize an instance of StatementParser.

The following will get converted to an immutable tuple before storing internally: terminators, multiline
commands, and shortcuts.

Parameters

• terminators – iterable containing strings which should terminate commands

• multiline_commands – iterable containing the names of commands that accept
multiline input

• aliases – dictionary containing aliases

• shortcuts – dictionary containing shortcuts

7.1. API Reference 115

cmd2 Documentation, Release 1.3

get_command_arg_list(command_name: str, to_parse: Union[cmd2.parsing.Statement, str], pre-
serve_quotes: bool)→ Tuple[cmd2.parsing.Statement, List[str]]

Convenience method used by the argument parsing decorators.

Retrieves just the arguments being passed to their do_* methods as a list.

Parameters

• command_name – name of the command being run

• to_parse – what is being passed to the do_* method. It can be one of two types:

1. An already parsed Statement

2. An argument string in cases where a do_* method is explicitly called. Calling
do_help('alias create') would cause to_parse to be ‘alias create’.

In this case, the string will be converted to a Statement and returned along with
the argument list.

• preserve_quotes – if True, then quotes will not be stripped from the arguments

Returns A tuple containing the Statement and a list of strings representing the arguments

is_valid_command(word: str, *, is_subcommand: bool = False)→ Tuple[bool, str]
Determine whether a word is a valid name for a command.

Commands can not include redirection characters, whitespace, or termination characters. They also cannot
start with a shortcut.

Parameters

• word – the word to check as a command

• is_subcommand – Flag whether this command name is a subcommand name

Returns a tuple of a boolean and an error string

If word is not a valid command, return False and an error string suitable for inclusion in an error message
of your choice:

checkit = '>'
valid, errmsg = statement_parser.is_valid_command(checkit)
if not valid:

errmsg = "alias: {}".format(errmsg)

parse(line: str)→ cmd2.parsing.Statement
Tokenize the input and parse it into a Statement object, stripping comments, expanding aliases and
shortcuts, and extracting output redirection directives.

Parameters line – the command line being parsed

Returns a new Statement object

Raises Cmd2ShlexError if a shlex error occurs (e.g. No closing quotation)

parse_command_only(rawinput: str)→ cmd2.parsing.Statement
Partially parse input into a Statement object.

The command is identified, and shortcuts and aliases are expanded. Multiline commands are identified,
but terminators and output redirection are not parsed.

This method is used by tab completion code and therefore must not generate an exception if there are
unclosed quotes.

116 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

The Statement object returned by this method can at most contain values in the following attributes:
args, raw , command, multiline_command

args will include all output redirection clauses and command terminators.

Different from parse() this method does not remove redundant whitespace within args. However, it
does ensure args has no leading or trailing whitespace.

Parameters rawinput – the command line as entered by the user

Returns a new Statement object

split_on_punctuation(tokens: List[str])→ List[str]
Further splits tokens from a command line using punctuation characters.

Punctuation characters are treated as word breaks when they are in unquoted strings. Each run of punctu-
ation characters is treated as a single token.

Parameters tokens – the tokens as parsed by shlex

Returns a new list of tokens, further split using punctuation

tokenize(line: str)→ List[str]
Lex a string into a list of tokens. Shortcuts and aliases are expanded and comments are removed.

Parameters line – the command line being lexed

Returns A list of tokens

Raises Cmd2ShlexError if a shlex error occurs (e.g. No closing quotation)

class cmd2.Statement(args=”, raw=”, command=”, arg_list=NOTHING, multiline_command=”, ter-
minator=”, suffix=”, pipe_to=”, output=”, output_to=”)

String subclass with additional attributes to store the results of parsing.

The cmd module in the standard library passes commands around as a string. To retain backwards compatibility,
cmd2 does the same. However, we need a place to capture the additional output of the command parsing, so we
add our own attributes to this subclass.

Instances of this class should not be created by anything other than the cmd2.parsing.
StatementParser.parse() method, nor should any of the attributes be modified once the object is cre-
ated.

The string portion of the class contains the arguments, but not the command, nor the output redirection clauses.

Tips:

1. argparse is your friend for anything complex. cmd2 has two decorators (with_argparser(), and
with_argparser_and_unknown_args()) which you can use to make your command method
receive a namespace of parsed arguments, whether positional or denoted with switches.

2. For commands with simple positional arguments, use args or arg_list

3. If you don’t want to have to worry about quoted arguments, see argv for a trick which strips quotes off
for you.

command
The name of the command after shortcuts and macros have been expanded

args
The arguments to the command as a string with spaces between the words, excluding output redirection
and command terminators. If the user used quotes in their input, they remain here, and you will have to
handle them on your own.

7.1. API Reference 117

https://docs.python.org/3/library/argparse.html

cmd2 Documentation, Release 1.3

arg_list
The arguments to the command as a list, excluding output redirection and command terminators. Each
argument is represented as an element in the list. Quoted arguments remain quoted. If you want to remove
the quotes, use cmd2.utils.strip_quotes() or use argv[1:]

raw
If you want full access to exactly what the user typed at the input prompt you can get it, but you’ll have
to parse it on your own, including:

• shortcuts and aliases

• quoted commands and arguments

• output redirection

• multi-line command terminator handling

If you use multiline commands, all the input will be passed to you in this string, but there will be embedded
newlines where the user hit return to continue the command on the next line.

multiline_command
If the command is a multi-line command, the name of the command will be in this attribute. Otherwise,
it will be an empty string.

terminator
If the command is a multi-line command, this attribute contains the termination character entered by the
user to signal the end of input

suffix
Any characters present between the input terminator and the output redirection tokens.

pipe_to
If the user piped the output to a shell command, this attribute contains the entire shell command as a
string. Otherwise it is an empty string.

output
If output was redirected by the user, this contains the redirection token, i.e. >>.

output_to
If output was redirected by the user, this contains the requested destination with quotes preserved.

argv
a list of arguments a-la sys.argv.

The first element of the list is the command after shortcut and macro expansion. Subsequent elements of
the list contain any additional arguments, with quotes removed, just like bash would. This is very useful
if you are going to use argparse.parse_args().

If you want to strip quotes from the input, you can use argv[1:].

command_and_args
Combine command and args with a space separating them.

Quoted arguments remain quoted. Output redirection and piping are excluded, as are any command
terminators.

expanded_command_line
Concatenate command_and_args() and post_command()

post_command
A string containing any ending terminator, suffix, and redirection chars

118 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

7.1.11 cmd2.plugin

class cmd2.plugin.PostparsingData(stop, statement)
Data class containing information passed to postparsing hook methods

stop
Request the command loop terminate by setting True

statement
The Statement object parsed from user input

class cmd2.plugin.PrecommandData(statement)
Data class containing information passed to precommand hook methods

statement
The Statement object parsed from user input

class cmd2.plugin.PostcommandData(stop, statement)
Data class containing information passed to postcommand hook methods

stop
Request the command loop terminate by setting True

statement
The Statement object parsed from user input

class cmd2.plugin.CommandFinalizationData(stop, statement)
Data class containing information passed to command finalization hook methods

stop
Request the command loop terminate by setting True

statement
The Statement object parsed from user input

7.1.12 cmd2.py_bridge

Bridges calls made inside of a Python environment to the Cmd2 host app while maintaining a reasonable degree of
isolation between the two.

class cmd2.py_bridge.CommandResult
Encapsulates the results from a cmd2 app command

Stdout str - output captured from stdout while this command is executing

Stderr str - output captured from stderr while this command is executing None if no error captured.

Stop bool - return value of onecmd_plus_hooks after it runs the given command line.

Data possible data populated by the command.

Any combination of these fields can be used when developing a scripting API for a given command. By default
stdout, stderr, and stop will be captured for you. If there is additional command specific data, then write that to
cmd2’s last_result member. That becomes the data member of this tuple.

In some cases, the data member may contain everything needed for a command and storing stdout and stderr
might just be a duplication of data that wastes memory. In that case, the StdSim can be told not to store output
with its pause_storage member. While this member is True, any output sent to StdSim won’t be saved in its
buffer.

The code would look like this:

7.1. API Reference 119

cmd2 Documentation, Release 1.3

if isinstance(self.stdout, StdSim):
self.stdout.pause_storage = True

if isinstance(sys.stderr, StdSim):
sys.stderr.pause_storage = True

See StdSim for more information.

Note: Named tuples are immutable. The contents are there for access, not for modification.

class cmd2.py_bridge.PyBridge(cmd2_app)
Provides a Python API wrapper for application commands.

7.1.13 cmd2.table_creator

class cmd2.table_creator.HorizontalAlignment
Horizontal alignment of text in a cell

CENTER = 2

LEFT = 1

RIGHT = 3

class cmd2.table_creator.VerticalAlignment
Vertical alignment of text in a cell

BOTTOM = 3

MIDDLE = 2

TOP = 1

class cmd2.table_creator.Column(header: str, *, width: Optional[int] = None,
header_horiz_align: cmd2.table_creator.HorizontalAlignment
= <HorizontalAlignment.LEFT: 1>, header_vert_align:
cmd2.table_creator.VerticalAlignment = <Verti-
calAlignment.BOTTOM: 3>, data_horiz_align:
cmd2.table_creator.HorizontalAlignment = <Hor-
izontalAlignment.LEFT: 1>, data_vert_align:
cmd2.table_creator.VerticalAlignment = <VerticalAlign-
ment.TOP: 1>, max_data_lines: Union[int, float] = inf)

Table column configuration

__init__(header: str, *, width: Optional[int] = None, header_horiz_align:
cmd2.table_creator.HorizontalAlignment = <HorizontalAlignment.LEFT: 1>,
header_vert_align: cmd2.table_creator.VerticalAlignment = <VerticalAlign-
ment.BOTTOM: 3>, data_horiz_align: cmd2.table_creator.HorizontalAlignment =
<HorizontalAlignment.LEFT: 1>, data_vert_align: cmd2.table_creator.VerticalAlignment
= <VerticalAlignment.TOP: 1>, max_data_lines: Union[int, float] = inf)→ None

Column initializer

Parameters

• header – label for column header

• width – display width of column. This does not account for any borders or padding
which may be added (e.g pre_line, inter_cell, and post_line). Header and data text

120 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

wrap within this width using word-based wrapping (defaults to width of header or 1
if header is blank)

• header_horiz_align – horizontal alignment of header cells (defaults to left)

• header_vert_align – vertical alignment of header cells (defaults to bottom)

• data_horiz_align – horizontal alignment of data cells (defaults to left)

• data_vert_align – vertical alignment of data cells (defaults to top)

• max_data_lines – maximum lines allowed in a data cell. If line count exceeds
this, then the final line displayed will be truncated with an ellipsis. (defaults to IN-
FINITY)

Raises ValueError if width is less than 1

Raises ValueError if max_data_lines is less than 1

class cmd2.table_creator.TableCreator(cols: Sequence[cmd2.table_creator.Column], *,
tab_width: int = 4)

Base table creation class. This class handles ANSI style sequences and characters with display widths greater
than 1 when performing width calculations. It was designed with the ability to build tables one row at a time.
This helps when you have large data sets that you don’t want to hold in memory or when you receive portions
of the data set incrementally.

TableCreator has one public method: generate_row()

This function and the Column class provide all features needed to build tables with headers, borders, colors,
horizontal and vertical alignment, and wrapped text. However, it’s generally easier to inherit from this class and
implement a more granular API rather than use TableCreator directly. There are ready-to-use examples of this
defined after this class.

__init__(cols: Sequence[cmd2.table_creator.Column], *, tab_width: int = 4)→ None
TableCreator initializer

Parameters

• cols – column definitions for this table

• tab_width – all tabs will be replaced with this many spaces. If a row’s fill_char is
a tab, then it will be converted to one space.

generate_row(*, row_data: Optional[Sequence[Any]] = None, fill_char: str = ’ ’, pre_line: str = ”,
inter_cell: str = ’ ’, post_line: str = ”)→ str

Generate a header or data table row

Parameters

• row_data – If this is None then a header row is generated. Otherwise data should
have an entry for each column in the row. (Defaults to None)

• fill_char – character that fills remaining space in a cell. Defaults to space. If this
is a tab, then it will be converted to one space. (Cannot be a line breaking character)

• pre_line – string to print before each line of a row. This can be used for a left row
border and padding before the first cell’s text. (Defaults to blank)

• inter_cell – string to print where two cells meet. This can be used for a border
between cells and padding between it and the 2 cells’ text. (Defaults to 2 spaces)

• post_line – string to print after each line of a row. This can be used for padding
after the last cell’s text and a right row border. (Defaults to blank)

Returns row string

7.1. API Reference 121

cmd2 Documentation, Release 1.3

Raises ValueError if data isn’t the same length as self.cols

Raises TypeError if fill_char is more than one character (not including ANSI style sequences)

Raises ValueError if fill_char, pre_line, inter_cell, or post_line contains an unprintable char-
acter like a newline

class cmd2.table_creator.SimpleTable(cols: Sequence[cmd2.table_creator.Column], *,
tab_width: int = 4, divider_char: Optional[str] = ’-’)

Implementation of TableCreator which generates a borderless table with an optional divider row after the header.
This class can be used to create the whole table at once or one row at a time.

__init__(cols: Sequence[cmd2.table_creator.Column], *, tab_width: int = 4, divider_char: Op-
tional[str] = ’-’)→ None

SimpleTable initializer

Parameters

• cols – column definitions for this table

• tab_width – all tabs will be replaced with this many spaces. If a row’s fill_char is
a tab, then it will be converted to one space.

• divider_char – optional character used to build the header divider row. Set this
to None if you don’t want a divider row. Defaults to dash. (Cannot be a line breaking
character)

Raises TypeError if fill_char is more than one character (not including ANSI style sequences)

Raises ValueError if text or fill_char contains an unprintable character

classmethod base_width(num_cols: int)→ int
Utility method to calculate the display width required for a table before data is added to it. This is useful
when determining how wide to make your columns to have a table be a specific width.

Parameters num_cols – how many columns the table will have

Returns base width

Raises ValueError if num_cols is less than 1

generate_data_row(row_data: Sequence[Any])→ str
Generate a data row

Parameters row_data – data with an entry for each column in the row

Returns data row string

generate_header()→ str
Generate table header with an optional divider row

generate_table(table_data: Sequence[Sequence[Any]], *, include_header: bool = True,
row_spacing: int = 1)→ str

Generate a table from a data set

Parameters

• table_data – Data with an entry for each data row of the table. Each entry should
have data for each column in the row.

• include_header – If True, then a header will be included at top of table. (Defaults
to True)

• row_spacing – A number 0 or greater specifying how many blank lines to place
between each row (Defaults to 1)

122 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

Raises ValueError if row_spacing is less than 0

total_width()→ int
Calculate the total display width of this table

class cmd2.table_creator.BorderedTable(cols: Sequence[cmd2.table_creator.Column], *,
tab_width: int = 4, column_borders: bool = True,
padding: int = 1)

Implementation of TableCreator which generates a table with borders around the table and between rows. Bor-
ders between columns can also be toggled. This class can be used to create the whole table at once or one row
at a time.

__init__(cols: Sequence[cmd2.table_creator.Column], *, tab_width: int = 4, column_borders: bool
= True, padding: int = 1)→ None

BorderedTable initializer

Parameters

• cols – column definitions for this table

• tab_width – all tabs will be replaced with this many spaces. If a row’s fill_char is
a tab, then it will be converted to one space.

• column_borders – if True, borders between columns will be included. This gives
the table a grid-like appearance. Turning off column borders results in a unified ap-
pearance between a row’s cells. (Defaults to True)

• padding – number of spaces between text and left/right borders of cell

Raises ValueError if padding is less than 0

classmethod base_width(num_cols: int, *, column_borders: bool = True, padding: int = 1)→
int

Utility method to calculate the display width required for a table before data is added to it. This is useful
when determining how wide to make your columns to have a table be a specific width.

Parameters

• num_cols – how many columns the table will have

• column_borders – if True, borders between columns will be included in the cal-
culation (Defaults to True)

• padding – number of spaces between text and left/right borders of cell

Returns base width

Raises ValueError if num_cols is less than 1

generate_data_row(row_data: Sequence[Any])→ str
Generate a data row

Parameters row_data – data with an entry for each column in the row

Returns data row string

generate_header()→ str
Generate table header

generate_header_bottom_border()
Generate a border which appears at the bottom of the header

generate_row_bottom_border()
Generate a border which appears at the bottom of rows

7.1. API Reference 123

cmd2 Documentation, Release 1.3

generate_table(table_data: Sequence[Sequence[Any]], *, include_header: bool = True)→ str
Generate a table from a data set

Parameters

• table_data – Data with an entry for each data row of the table. Each entry should
have data for each column in the row.

• include_header – If True, then a header will be included at top of table. (Defaults
to True)

generate_table_bottom_border()
Generate a border which appears at the bottom of the table

generate_table_top_border()
Generate a border which appears at the top of the header and data section

total_width()→ int
Calculate the total display width of this table

class cmd2.table_creator.AlternatingTable(cols: Sequence[cmd2.table_creator.Column],
*, tab_width: int = 4, column_borders:
bool = True, padding: int = 1, bg_odd:
Optional[cmd2.ansi.bg] = None, bg_even:
Optional[cmd2.ansi.bg] = <bg.bright_black:
’x1b[100m’>)

Implementation of BorderedTable which uses background colors to distinguish between rows instead of row
border lines. This class can be used to create the whole table at once or one row at a time.

__init__(cols: Sequence[cmd2.table_creator.Column], *, tab_width: int = 4, column_borders: bool
= True, padding: int = 1, bg_odd: Optional[cmd2.ansi.bg] = None, bg_even: Op-
tional[cmd2.ansi.bg] = <bg.bright_black: ’\x1b[100m’>)→ None

AlternatingTable initializer

Parameters

• cols – column definitions for this table

• tab_width – all tabs will be replaced with this many spaces. If a row’s fill_char is
a tab, then it will be converted to one space.

• column_borders – if True, borders between columns will be included. This gives
the table a grid-like appearance. Turning off column borders results in a unified ap-
pearance between a row’s cells. (Defaults to True)

• padding – number of spaces between text and left/right borders of cell

• bg_odd – optional background color for odd numbered rows (defaults to None)

• bg_even – optional background color for even numbered rows (defaults to gray)

Raises ValueError if padding is less than 0

generate_data_row(row_data: Sequence[Any])→ str
Generate a data row

Parameters row_data – data with an entry for each column in the row

Returns data row string

generate_table(table_data: Sequence[Sequence[Any]], *, include_header: bool = True)→ str
Generate a table from a data set

Parameters

124 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

• table_data – Data with an entry for each data row of the table. Each entry should
have data for each column in the row.

• include_header – If True, then a header will be included at top of table. (Defaults
to True)

7.1.14 cmd2.utils

Settings

class cmd2.utils.Settable(name: str, val_type: Callable, description: str, *, onchange_cb:
Callable[[str, Any, Any], Any] = None, choices: Iterable[T_co] = None,
choices_function: Optional[Callable] = None, choices_method: Op-
tional[Callable] = None, completer_function: Optional[Callable] =
None, completer_method: Optional[Callable] = None)

Used to configure a cmd2 instance member to be settable via the set command in the CLI

__init__(name: str, val_type: Callable, description: str, *, onchange_cb: Callable[[str, Any, Any],
Any] = None, choices: Iterable[T_co] = None, choices_function: Optional[Callable]
= None, choices_method: Optional[Callable] = None, completer_function: Op-
tional[Callable] = None, completer_method: Optional[Callable] = None)

Settable Initializer

Parameters

• name – name of the instance attribute being made settable

• val_type – callable used to cast the string value from the command line into its
proper type and even validate its value. Setting this to bool provides tab completion
for true/false and validation using str_to_bool(). The val_type function should raise
an exception if it fails. This exception will be caught and printed by Cmd.do_set().

• description – string describing this setting

• onchange_cb – optional function or method to call when the value of this settable
is altered by the set command. (e.g. onchange_cb=self.debug_changed)

Cmd.do_set() passes the following 3 arguments to onchange_cb: param_name:
str - name of the changed parameter old_value: Any - the value before being
changed new_value: Any - the value after being changed

The following optional settings provide tab completion for a parameter’s values. They correspond to the
same settings in argparse-based tab completion. A maximum of one of these should be provided.

Parameters

• choices – iterable of accepted values

• choices_function – function that provides choices for this argument

• choices_method – cmd2-app method that provides choices for this argument (See
note below)

• completer_function – tab completion function that provides choices for this
argument

• completer_method – cmd2-app tab completion method that provides choices for
this argument (See note below)

Note: For choices_method and completer_method, do not set them to a bound method. This is because
ArgparseCompleter passes the self argument explicitly to these functions.

7.1. API Reference 125

cmd2 Documentation, Release 1.3

Therefore instead of passing something like self.path_complete, pass cmd2.Cmd.path_complete.

Quote Handling

cmd2.utils.is_quoted(arg: str)→ bool
Checks if a string is quoted

Parameters arg – the string being checked for quotes

Returns True if a string is quoted

cmd2.utils.quote_string(arg: str)→ str
Quote a string

cmd2.utils.quote_string_if_needed(arg: str)→ str
Quote a string if it contains spaces and isn’t already quoted

cmd2.utils.strip_quotes(arg: str)→ str
Strip outer quotes from a string.

Applies to both single and double quotes.

Parameters arg – string to strip outer quotes from

Returns same string with potentially outer quotes stripped

IO Handling

class cmd2.utils.StdSim(inner_stream, *, echo: bool = False, encoding: str = ’utf-8’, errors: str =
’replace’)

Class to simulate behavior of sys.stdout or sys.stderr. Stores contents in internal buffer and optionally echos to
the inner stream it is simulating.

clear()→ None
Clear the internal contents

getbytes()→ bytes
Get the internal contents as bytes

getvalue()→ str
Get the internal contents as a str

isatty()→ bool
StdSim only considered an interactive stream if echo is True and inner_stream is a tty.

line_buffering
Handle when the inner stream doesn’t have a line_buffering attribute which is the case when running unit
tests because pytest sets stdout to a pytest EncodedFile object.

read(size: Optional[int] = -1)→ str
Read from the internal contents as a str and then clear them out

readbytes()→ bytes
Read from the internal contents as bytes and then clear them out

write(s: str)→ None
Add str to internal bytes buffer and if echo is True, echo contents to inner stream

class cmd2.utils.ByteBuf(std_sim_instance: cmd2.utils.StdSim)
Used by StdSim to write binary data and stores the actual bytes written

126 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

write(b: bytes)→ None
Add bytes to internal bytes buffer and if echo is True, echo contents to inner stream.

class cmd2.utils.ProcReader(proc: subprocess.Popen, stdout: Union[cmd2.utils.StdSim, TextIO],
stderr: Union[cmd2.utils.StdSim, TextIO])

Used to capture stdout and stderr from a Popen process if any of those were set to subprocess.PIPE. If neither
are pipes, then the process will run normally and no output will be captured.

send_sigint()→ None
Send a SIGINT to the process similar to if <Ctrl>+C were pressed

terminate()→ None
Terminate the process

wait()→ None
Wait for the process to finish

Tab Completion

class cmd2.utils.CompletionError(*args, apply_style: bool = True, **kwargs)
Raised during tab completion operations to report any sort of error you want printed. This can also be used
just to display a message, even if it’s not an error. For instance, ArgparseCompleter raises CompletionErrors to
display tab completion hints and sets apply_style to False so hints aren’t colored like error text.

Example use cases

• Reading a database to retrieve a tab completion data set failed

• A previous command line argument that determines the data set being completed is invalid

• Tab completion hints

cmd2.utils.basic_complete(text: str, line: str, begidx: int, endidx: int, match_against: Iter-
able[T_co])→ List[str]

Basic tab completion function that matches against a list of strings without considering line contents or cursor
position. The args required by this function are defined in the header of Python’s cmd.py.

Parameters

• text – the string prefix we are attempting to match (all matches must begin with it)

• line – the current input line with leading whitespace removed

• begidx – the beginning index of the prefix text

• endidx – the ending index of the prefix text

• match_against – the strings being matched against

Returns a list of possible tab completions

Text Alignment

class cmd2.utils.TextAlignment
Horizontal text alignment

CENTER = 2

LEFT = 1

RIGHT = 3

7.1. API Reference 127

cmd2 Documentation, Release 1.3

cmd2.utils.align_text(text: str, alignment: cmd2.utils.TextAlignment, *, fill_char: str = ’ ’, width:
Optional[int] = None, tab_width: int = 4, truncate: bool = False)→ str

Align text for display within a given width. Supports characters with display widths greater than 1. ANSI style
sequences do not count toward the display width. If text has line breaks, then each line is aligned independently.

There are convenience wrappers around this function: align_left(), align_center(), and align_right()

Parameters

• text – text to align (can contain multiple lines)

• alignment – how to align the text

• fill_char – character that fills the alignment gap. Defaults to space. (Cannot be a
line breaking character)

• width – display width of the aligned text. Defaults to width of the terminal.

• tab_width – any tabs in the text will be replaced with this many spaces. if fill_char is
a tab, then it will be converted to one space.

• truncate – if True, then each line will be shortened to fit within the display width. The
truncated portions are replaced by a ‘. . . ’ character. Defaults to False.

Returns aligned text

Raises TypeError if fill_char is more than one character (not including ANSI style sequences)

Raises ValueError if text or fill_char contains an unprintable character

Raises ValueError if width is less than 1

cmd2.utils.align_left(text: str, *, fill_char: str = ’ ’, width: Optional[int] = None, tab_width: int =
4, truncate: bool = False)→ str

Left align text for display within a given width. Supports characters with display widths greater than 1. ANSI
style sequences do not count toward the display width. If text has line breaks, then each line is aligned indepen-
dently.

Parameters

• text – text to left align (can contain multiple lines)

• fill_char – character that fills the alignment gap. Defaults to space. (Cannot be a
line breaking character)

• width – display width of the aligned text. Defaults to width of the terminal.

• tab_width – any tabs in the text will be replaced with this many spaces. if fill_char is
a tab, then it will be converted to one space.

• truncate – if True, then text will be shortened to fit within the display width. The
truncated portion is replaced by a ‘. . . ’ character. Defaults to False.

Returns left-aligned text

Raises TypeError if fill_char is more than one character (not including ANSI style sequences)

Raises ValueError if text or fill_char contains an unprintable character

Raises ValueError if width is less than 1

cmd2.utils.align_right(text: str, *, fill_char: str = ’ ’, width: Optional[int] = None, tab_width: int
= 4, truncate: bool = False)→ str

Right align text for display within a given width. Supports characters with display widths greater than 1. ANSI
style sequences do not count toward the display width. If text has line breaks, then each line is aligned indepen-
dently.

128 Chapter 7. API Reference

cmd2 Documentation, Release 1.3

Parameters

• text – text to right align (can contain multiple lines)

• fill_char – character that fills the alignment gap. Defaults to space. (Cannot be a
line breaking character)

• width – display width of the aligned text. Defaults to width of the terminal.

• tab_width – any tabs in the text will be replaced with this many spaces. if fill_char is
a tab, then it will be converted to one space.

• truncate – if True, then text will be shortened to fit within the display width. The
truncated portion is replaced by a ‘. . . ’ character. Defaults to False.

Returns right-aligned text

Raises TypeError if fill_char is more than one character (not including ANSI style sequences)

Raises ValueError if text or fill_char contains an unprintable character

Raises ValueError if width is less than 1

cmd2.utils.align_center(text: str, *, fill_char: str = ’ ’, width: Optional[int] = None, tab_width: int
= 4, truncate: bool = False)→ str

Center text for display within a given width. Supports characters with display widths greater than 1. ANSI style
sequences do not count toward the display width. If text has line breaks, then each line is aligned independently.

Parameters

• text – text to center (can contain multiple lines)

• fill_char – character that fills the alignment gap. Defaults to space. (Cannot be a
line breaking character)

• width – display width of the aligned text. Defaults to width of the terminal.

• tab_width – any tabs in the text will be replaced with this many spaces. if fill_char is
a tab, then it will be converted to one space.

• truncate – if True, then text will be shortened to fit within the display width. The
truncated portion is replaced by a ‘. . . ’ character. Defaults to False.

Returns centered text

Raises TypeError if fill_char is more than one character (not including ANSI style sequences)

Raises ValueError if text or fill_char contains an unprintable character

Raises ValueError if width is less than 1

cmd2.utils.truncate_line(line: str, max_width: int, *, tab_width: int = 4)→ str
Truncate a single line to fit within a given display width. Any portion of the string that is truncated is replaced
by a ‘. . . ’ character. Supports characters with display widths greater than 1. ANSI style sequences do not count
toward the display width.

If there are ANSI style sequences in the string after where truncation occurs, this function will append them to
the returned string.

This is done to prevent issues caused in cases like: truncate_string(fg.blue + hello + fg.reset, 3) In this case,
“hello” would be truncated before fg.reset resets the color from blue. Appending the remaining style sequences
makes sure the style is in the same state had the entire string been printed. align_text() relies on this behavior
when preserving style over multiple lines.

Parameters

• line – text to truncate

7.1. API Reference 129

cmd2 Documentation, Release 1.3

• max_width – the maximum display width the resulting string is allowed to have

• tab_width – any tabs in the text will be replaced with this many spaces

Returns line that has a display width less than or equal to width

Raises ValueError if text contains an unprintable character like a newline

Raises ValueError if max_width is less than 1

Miscellaneous

cmd2.utils.str_to_bool(val: str)→ bool
Converts a string to a boolean based on its value.

Parameters val – string being converted

Returns boolean value expressed in the string

Raises ValueError if the string does not contain a value corresponding to a boolean value

cmd2.utils.namedtuple_with_defaults(typename: str, field_names: Union[str, List[str]], de-
fault_values: collections.abc.Iterable = ())

Convenience function for defining a namedtuple with default values

From: https://stackoverflow.com/questions/11351032/namedtuple-and-default-values-for-optional-keyword-arguments

Examples:

>>> Node = namedtuple_with_defaults('Node', 'val left right')
>>> Node()
Node(val=None, left=None, right=None)
>>> Node = namedtuple_with_defaults('Node', 'val left right', [1, 2, 3])
>>> Node()
Node(val=1, left=2, right=3)
>>> Node = namedtuple_with_defaults('Node', 'val left right', {'right':7})
>>> Node()
Node(val=None, left=None, right=7)
>>> Node(4)
Node(val=4, left=None, right=7)

cmd2.utils.categorize(func: Union[Callable, Iterable[Callable]], category: str)→ None
Categorize a function.

The help command output will group the passed function under the specified category heading

Parameters

• func – function or list of functions to categorize

• category – category to put it in

Example

>>> import cmd2
>>> class MyApp(cmd2.Cmd):
>>> def do_echo(self, arglist):
>>> self.poutput(' '.join(arglist)
>>>
>>> cmd2.utils.categorize(do_echo, "Text Processing")

For an alternative approach to categorizing commands using a decorator, see with_category()

130 Chapter 7. API Reference

https://stackoverflow.com/questions/11351032/namedtuple-and-default-values-for-optional-keyword-arguments

cmd2 Documentation, Release 1.3

cmd2.utils.remove_duplicates(list_to_prune: List[T])→ List[T]
Removes duplicates from a list while preserving order of the items.

Parameters list_to_prune – the list being pruned of duplicates

Returns The pruned list

cmd2.utils.alphabetical_sort(list_to_sort: Iterable[str])→ List[str]
Sorts a list of strings alphabetically.

For example: [‘a1’, ‘A11’, ‘A2’, ‘a22’, ‘a3’]

To sort a list in place, don’t call this method, which makes a copy. Instead, do this:

my_list.sort(key=norm_fold)

Parameters list_to_sort – the list being sorted

Returns the sorted list

cmd2.utils.natural_sort(list_to_sort: Iterable[str])→ List[str]
Sorts a list of strings case insensitively as well as numerically.

For example: [‘a1’, ‘A2’, ‘a3’, ‘A11’, ‘a22’]

To sort a list in place, don’t call this method, which makes a copy. Instead, do this:

my_list.sort(key=natural_keys)

Parameters list_to_sort – the list being sorted

Returns the list sorted naturally

7.1.15 cmd2_ext_test

External Test Plugin

Modules

• cmd2.Cmd - functions and attributes of the main class in this library

• cmd2.ansi - convenience classes and functions for generating ANSI escape sequences to style text in the terminal

• cmd2.argparse_completer - classes for argparse-based tab completion

• cmd2.argparse_custom - classes and functions for extending argparse

• cmd2.constants - just like it says on the tin

• cmd2.decorators - decorators for cmd2 commands

• cmd2.exceptions - custom cmd2 exceptions

• cmd2.history - classes for storing the history of previously entered commands

• cmd2.parsing - classes for parsing and storing user input

• cmd2.plugin - data classes for hook methods

• cmd2.py_bridge - classes for bridging calls from the embedded python environment to the host app

• cmd2.table_creator - table creation module

• cmd2.utils - various utility classes and functions

• cmd2_ext_test - External test plugin

7.1. API Reference 131

cmd2 Documentation, Release 1.3

132 Chapter 7. API Reference

CHAPTER 8

Meta

Documentation Conventions

8.1 Documentation Conventions

8.1.1 Guiding Principles

Follow the Documentation Principles described by Write The Docs

In addition:

• We have gone to great lengths to retain compatibility with the standard library cmd, the documentation should
make it easy for developers to understand how to move from cmd to cmd2, and what benefits that will provide

• We should provide both descriptive and reference documentation.

• API reference documentation should be generated from docstrings in the code

• Documentation should include rich hyperlinking to other areas of the documentation, and to the API reference

8.1.2 Style Checker

Use doc8 to check the style of the documentation. This tool can be invoked using the proper options by typing:

$ invoke doc8

8.1.3 Naming Files

All source files in the documentation must:

• have all lower case file names

• if the name has multiple words, separate them with an underscore

133

http://www.writethedocs.org/guide/writing/docs-principles/
http://www.writethedocs.org
https://pypi.org/project/doc8/

cmd2 Documentation, Release 1.3

• end in ‘.rst’

8.1.4 Indenting

In reStructuredText all indenting is significant. Use 2 spaces per indenting level.

8.1.5 Wrapping

Hard wrap all text so that line lengths are no greater than 79 characters. It makes everything easier when editing
documentation, and has no impact on reading documentation because we render to html.

8.1.6 Titles and Headings

reStructuredText allows flexibility in how headings are defined. You only have to worry about the heirarchy of headings
within a single file. Sphinx magically handles the intra-file heirarchy on it’s own. This magic means that no matter
how you style titles and headings in the various files that comprise the documentation, Sphinx will render properly
structured output. To ensure we have a similar consistency when viewing the source files, we use the following
conventions for titles and headings:

1. When creating a heading for a section, do not use the overline and underline syntax. Use the underline syntax only:

Document Title
==============

2. The string of adornment characters on the line following the heading should be the same length as the title.

3. The title of a document should use the ‘=’ adornment character on the next line and only one heading of this level
should appear in each file.

4. Sections within a document should have their titles adorned with the ‘-‘ character:

Section Title

5. Subsections within a section should have their titles adorned with the ‘~’ character:

Subsection Title
~~~~~~~~~~~~~~~~

6. Use two blank lines before every title unless it’s the first heading in the file. Use one blank line after every heading.

7. If your document needs more than three levels of sections, break it into separate documents.

8.1.7 Inline Code

This documentation declares python as the default Sphinx domain. Python code or interactive Python sessions can
be presented by either:

• finishing the preceding paragraph with a :: and indenting the code

• use the .. code-block:: directive

If you want to show non-Python code, like shell commands, then use .. code-block: shell.

134 Chapter 8. Meta



cmd2 Documentation, Release 1.3

8.1.8 External Hyperlinks

If you want to use an external hyperlink target, define the target at the top of the page or the top of the section, not the
bottom. The target definition should always appear before it is referenced.

8.1.9 Links To Other Documentation Pages and Sections

We use the Sphinx autosectionlabel extension. This allows you to reference any header in any document by:

See :ref:`features/argument_processing:Help Messages`

or:

See :ref:`custom title<features/argument_processing:Help Messages>`

Which render like

See Help Messages

and

See custom title

8.1.10 API Documentation

The API documentation is mostly pulled from docstrings in the source code using the Sphinx autodoc extension. How-
ever, Sphinx has issues generating documentation for instance attributes (see cmd2 issue 821 for the full discussion).
We have chosen to not use code as the source of instance attribute documentation. Instead, it is added manually to the
documentation files in cmd2/docs/api. See cmd2/docs/api/cmd.rst to see how to add documentation for
an attribute.

For module data members and class attributes, the autodoc extension allows documentation in a comment with
special formatting (using a #: to start the comment instead of just #), or in a docstring after the definition. This project
has standardized on the docstring after the definition approach. Do not use the specially formatted comment approach.

When using the Sphix autoclass directive, it must be preceded by two blank lines like so:

Classes for storing the history of previously entered commands.

.. autoclass:: cmd2.history.History
:members:

.. autoclass:: cmd2.history.HistoryItem
:members:

8.1.11 Links to API Reference

To reference a method or function, use one of the following approaches:

1. Reference the full dotted path of the method:

The :meth:`cmd2.Cmd.poutput` method is similar to the Python built-in
print function.

8.1. Documentation Conventions 135

http://www.sphinx-doc.org/en/master/usage/extensions/autosectionlabel.html
https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html
https://github.com/python-cmd2/cmd2/issues/821


cmd2 Documentation, Release 1.3

Which renders as: The cmd2.Cmd.poutput() method is similar to the Python built-in print function.

2. Reference the full dotted path to the method, but only display the method name:

The :meth:`~cmd2.Cmd.poutput` method is similar to the Python built-in print function.

Which renders as: The poutput() method is similar to the Python built-in print function.

Avoid either of these approaches:

1. Reference just the class name without enough dotted path:

The :meth:`.Cmd.poutput` method is similar to the Python built-in print
function.

Because cmd2.Cmd subclasses cmd.Cmd from the standard library, this approach does not clarify which class it is
referring to.

2. Reference just a method name:

The :meth:`poutput` method is similar to the Python built-in print
function.

While Sphinx may be smart enough to generate the correct output, the potential for multiple matching references is
high, which causes Sphinx to generate warnings. The build pipeline that renders the documentation treats warnings as
fatal errors. It’s best to just be specific about what you are referencing.

See https://github.com/python-cmd2/cmd2/issues/821 for the discussion of how we determined this approach.

8.1.12 Referencing cmd2

Whenever you reference cmd2 in the documentation, enclose it in double backticks. This indicates an inline literal in
restructured text, and makes it stand out when rendered as html.

136 Chapter 8. Meta

https://github.com/python-cmd2/cmd2/issues/821


Python Module Index

c
cmd2.ansi, 102
cmd2.argparse_completer, 104
cmd2.argparse_custom, 105
cmd2.clipboard, 28
cmd2.command_definition, 109
cmd2.constants, 109
cmd2.decorators, 110
cmd2.py_bridge, 119

137



cmd2 Documentation, Release 1.3

138 Python Module Index



Index

Symbols
__init__() (cmd2.Cmd method), 89
__init__() (cmd2.parsing.StatementParser method),

115
__init__() (cmd2.table_creator.AlternatingTable

method), 124
__init__() (cmd2.table_creator.BorderedTable

method), 123
__init__() (cmd2.table_creator.Column method),

120
__init__() (cmd2.table_creator.SimpleTable

method), 122
__init__() (cmd2.table_creator.TableCreator

method), 121
__init__() (cmd2.utils.Settable method), 125

A
add_settable() (cmd2.Cmd method), 91
add_subparsers() (cmd2.argparse_custom.Cmd2ArgumentParser

method), 108
aliases (cmd2.Cmd attribute), 91
align_center() (in module cmd2.utils), 129
align_left() (in module cmd2.utils), 128
align_right() (in module cmd2.utils), 128
align_text() (in module cmd2.utils), 127
allow_style (cmd2.Cmd attribute), 91
allow_style (in module cmd2.ansi), 102
alphabetical_sort() (in module cmd2.utils), 131
ALPHABETICAL_SORT_KEY() (cmd2.Cmd method),

91
AlternatingTable (class in cmd2.table_creator),

124
append() (cmd2.history.History method), 114
arg_list (cmd2.Statement attribute), 117
ArgparseCompleter (class in

cmd2.argparse_completer), 104
args (cmd2.Statement attribute), 117
argv (cmd2.Statement attribute), 118
as_subcommand_to() (in module cmd2.decorators),

110
async_alert() (cmd2.Cmd method), 91
async_alert_str() (in module cmd2.ansi), 102
async_update_prompt() (cmd2.Cmd method), 92

B
base_width() (cmd2.table_creator.BorderedTable

class method), 123
base_width() (cmd2.table_creator.SimpleTable class

method), 122
basic_complete() (in module cmd2.utils), 127
bg (class in cmd2.ansi), 103
bg_lookup() (in module cmd2.ansi), 103
BG_RESET (in module cmd2.ansi), 102
BorderedTable (class in cmd2.table_creator), 123
BOTTOM (cmd2.table_creator.VerticalAlignment at-

tribute), 120
build_settables() (cmd2.Cmd method), 92
ByteBuf (class in cmd2.utils), 126

C
categorize() (in module cmd2.utils), 130
CENTER (cmd2.table_creator.HorizontalAlignment at-

tribute), 120
CENTER (cmd2.utils.TextAlignment attribute), 127
ChoicesCallable (class in cmd2.argparse_custom),

108
clear() (cmd2.history.History method), 114
clear() (cmd2.utils.StdSim method), 126
Cmd (class in cmd2), 89
cmd2.ansi (module), 102
cmd2.argparse_completer (module), 104
cmd2.argparse_custom (module), 105
cmd2.clipboard (module), 28
cmd2.command_definition (module), 109
cmd2.constants (module), 109
cmd2.decorators (module), 110
cmd2.py_bridge (module), 119
Cmd2ArgparseError (class in cmd2.exceptions), 113

139



cmd2 Documentation, Release 1.3

Cmd2ArgumentParser (class in
cmd2.argparse_custom), 108

Cmd2AttributeWrapper (class in
cmd2.argparse_custom), 108

Cmd2HelpFormatter (class in
cmd2.argparse_custom), 108

cmd_func() (cmd2.Cmd method), 92
cmdloop() (cmd2.Cmd method), 92
ColorBase (class in cmd2.ansi), 102
Column (class in cmd2.table_creator), 120
command (cmd2.Statement attribute), 117
command_and_args (cmd2.Statement attribute), 118
COMMAND_NAME (in module cmd2.constants), 109
CommandFinalizationData (class in

cmd2.plugin), 119
CommandResult (class in cmd2.py_bridge), 119
CommandSet (class in cmd2.command_definition), 109
CommandSetRegistrationError (class in

cmd2.exceptions), 113
complete() (cmd2.Cmd method), 92
complete_command()

(cmd2.argparse_completer.ArgparseCompleter
method), 104

complete_help_command() (cmd2.Cmd method),
93

complete_help_subcommands() (cmd2.Cmd
method), 93

complete_set_value() (cmd2.Cmd method), 93
complete_subcommand_help()

(cmd2.argparse_completer.ArgparseCompleter
method), 104

CompletionError (class in cmd2.utils), 127
CompletionItem (class in cmd2.argparse_custom),

108
continuation_prompt (cmd2.Cmd attribute), 91

D
default() (cmd2.Cmd method), 93
DEFAULT_ARGUMENT_PARSER (in module

cmd2.argparse_custom), 109
default_error (cmd2.Cmd attribute), 90
DEFAULT_SHORTCUTS (in module cmd2.constants),

109
delimiter_complete() (cmd2.Cmd method), 93
disable_category() (cmd2.Cmd method), 94
disable_command() (cmd2.Cmd method), 94
do__relative_run_script() (cmd2.Cmd

method), 94
do_alias() (cmd2.Cmd method), 94
do_edit() (cmd2.Cmd method), 94
do_eof() (cmd2.Cmd method), 94
do_help() (cmd2.Cmd method), 94
do_history() (cmd2.Cmd method), 94
do_macro() (cmd2.Cmd method), 94

do_py() (cmd2.Cmd method), 95
do_quit() (cmd2.Cmd method), 95
do_run_pyscript() (cmd2.Cmd method), 95
do_run_script() (cmd2.Cmd method), 95
do_set() (cmd2.Cmd method), 95
do_shell() (cmd2.Cmd method), 95
do_shortcuts() (cmd2.Cmd method), 95

E
echo (cmd2.Cmd attribute), 91
enable_category() (cmd2.Cmd method), 95
enable_command() (cmd2.Cmd method), 95
error() (cmd2.argparse_custom.Cmd2ArgumentParser

method), 108
expanded (cmd2.history.HistoryItem attribute), 115
expanded_command_line (cmd2.Statement at-

tribute), 118

F
fg (class in cmd2.ansi), 103
fg_lookup() (in module cmd2.ansi), 103
FG_RESET (in module cmd2.ansi), 102
find_commandset_for_command() (cmd2.Cmd

method), 95
find_commandsets() (cmd2.Cmd method), 95
flag_based_complete() (cmd2.Cmd method), 95
format_help() (cmd2.argparse_completer.ArgparseCompleter

method), 104
format_help() (cmd2.argparse_custom.Cmd2ArgumentParser

method), 108

G
generate_data_row()

(cmd2.table_creator.AlternatingTable method),
124

generate_data_row()
(cmd2.table_creator.BorderedTable method),
123

generate_data_row()
(cmd2.table_creator.SimpleTable method),
122

generate_header()
(cmd2.table_creator.BorderedTable method),
123

generate_header()
(cmd2.table_creator.SimpleTable method),
122

generate_header_bottom_border()
(cmd2.table_creator.BorderedTable method),
123

generate_range_error() (in module
cmd2.argparse_custom), 109

generate_row() (cmd2.table_creator.TableCreator
method), 121

140 Index



cmd2 Documentation, Release 1.3

generate_row_bottom_border()
(cmd2.table_creator.BorderedTable method),
123

generate_table() (cmd2.table_creator.AlternatingTable
method), 124

generate_table() (cmd2.table_creator.BorderedTable
method), 123

generate_table() (cmd2.table_creator.SimpleTable
method), 122

generate_table_bottom_border()
(cmd2.table_creator.BorderedTable method),
124

generate_table_top_border()
(cmd2.table_creator.BorderedTable method),
124

get() (cmd2.argparse_custom.Cmd2AttributeWrapper
method), 108

get() (cmd2.history.History method), 114
get_all_commands() (cmd2.Cmd method), 96
get_command_arg_list()

(cmd2.parsing.StatementParser method),
115

get_help_topics() (cmd2.Cmd method), 96
get_names() (cmd2.Cmd method), 96
get_paste_buffer() (in module cmd2.clipboard),

28
get_visible_commands() (cmd2.Cmd method), 96
getbytes() (cmd2.utils.StdSim method), 126
getvalue() (cmd2.utils.StdSim method), 126

H
help_error (cmd2.Cmd attribute), 91
History (class in cmd2.history), 113
history (cmd2.Cmd attribute), 91
HistoryItem (class in cmd2.history), 115
HorizontalAlignment (class in

cmd2.table_creator), 120

I
idx (cmd2.history.HistoryItem attribute), 115
in_pyscript() (cmd2.Cmd method), 96
in_script() (cmd2.Cmd method), 96
index_based_complete() (cmd2.Cmd method), 96
INTENSITY_BRIGHT (in module cmd2.ansi), 102
INTENSITY_DIM (in module cmd2.ansi), 102
INTENSITY_NORMAL (in module cmd2.ansi), 102
intro (cmd2.Cmd attribute), 91
is_quoted() (in module cmd2.utils), 126
is_valid_command()

(cmd2.parsing.StatementParser method),
116

isatty() (cmd2.utils.StdSim method), 126

L
LEFT (cmd2.table_creator.HorizontalAlignment at-

tribute), 120
LEFT (cmd2.utils.TextAlignment attribute), 127
line_buffering (cmd2.utils.StdSim attribute), 126

M
MIDDLE (cmd2.table_creator.VerticalAlignment at-

tribute), 120
multiline_command (cmd2.Statement attribute), 118

N
namedtuple_with_defaults() (in module

cmd2.utils), 130
natural_sort() (in module cmd2.utils), 131
NATURAL_SORT_KEY() (cmd2.Cmd method), 91

O
on_register() (cmd2.command_definition.CommandSet

method), 110
on_registered() (cmd2.command_definition.CommandSet

method), 110
on_unregister() (cmd2.command_definition.CommandSet

method), 110
on_unregistered()

(cmd2.command_definition.CommandSet
method), 110

onecmd() (cmd2.Cmd method), 96
onecmd_plus_hooks() (cmd2.Cmd method), 97
output (cmd2.Statement attribute), 118
output_to (cmd2.Statement attribute), 118

P
parse() (cmd2.parsing.StatementParser method), 116
parse_command_only()

(cmd2.parsing.StatementParser method),
116

parseline() (cmd2.Cmd method), 97
path_complete() (cmd2.Cmd method), 97
perror() (cmd2.Cmd method), 97
pexcept() (cmd2.Cmd method), 98
pfeedback() (cmd2.Cmd method), 98
pipe_to (cmd2.Statement attribute), 118
post_command (cmd2.Statement attribute), 118
postcmd() (cmd2.Cmd method), 98
PostcommandData (class in cmd2.plugin), 119
postloop() (cmd2.Cmd method), 98
PostparsingData (class in cmd2.plugin), 119
poutput() (cmd2.Cmd method), 98
ppaged() (cmd2.Cmd method), 98
pr() (cmd2.history.HistoryItem method), 115
precmd() (cmd2.Cmd method), 99
PrecommandData (class in cmd2.plugin), 119

Index 141



cmd2 Documentation, Release 1.3

preloop() (cmd2.Cmd method), 99
ProcReader (class in cmd2.utils), 127
prompt (cmd2.Cmd attribute), 91
pwarning() (cmd2.Cmd method), 99
py_bridge_name (cmd2.Cmd attribute), 91
PyBridge (class in cmd2.py_bridge), 120

Q
quote_string() (in module cmd2.utils), 126
quote_string_if_needed() (in module

cmd2.utils), 126

R
raw (cmd2.history.HistoryItem attribute), 115
raw (cmd2.Statement attribute), 118
read() (cmd2.utils.StdSim method), 126
read_input() (cmd2.Cmd method), 99
readbytes() (cmd2.utils.StdSim method), 126
regex_search() (cmd2.history.History method), 114
register_cmdfinalization_hook()

(cmd2.Cmd method), 99
register_command_set() (cmd2.Cmd method),

100
register_postcmd_hook() (cmd2.Cmd method),

100
register_postloop_hook() (cmd2.Cmd method),

100
register_postparsing_hook() (cmd2.Cmd

method), 100
register_precmd_hook() (cmd2.Cmd method),

100
register_preloop_hook() (cmd2.Cmd method),

100
remove_duplicates() (in module cmd2.utils), 130
remove_settable() (cmd2.Cmd method), 100
RESET_ALL (in module cmd2.ansi), 102
RIGHT (cmd2.table_creator.HorizontalAlignment at-

tribute), 120
RIGHT (cmd2.utils.TextAlignment attribute), 127
runcmds_plus_hooks() (cmd2.Cmd method), 100

S
select() (cmd2.Cmd method), 100
send_sigint() (cmd2.utils.ProcReader method), 127
set() (cmd2.argparse_custom.Cmd2AttributeWrapper

method), 108
set_choices_function() (in module

cmd2.argparse_custom), 109
set_choices_method() (in module

cmd2.argparse_custom), 109
set_completer_function() (in module

cmd2.argparse_custom), 109
set_completer_method() (in module

cmd2.argparse_custom), 109

set_default_argument_parser() (in module
cmd2.argparse_custom), 109

set_title_str() (in module cmd2.ansi), 103
set_window_title() (cmd2.Cmd method), 100
Settable (class in cmd2.utils), 125
settable (cmd2.Cmd attribute), 91
shell_cmd_complete() (cmd2.Cmd method), 101
sigint_handler() (cmd2.Cmd method), 101
SimpleTable (class in cmd2.table_creator), 122
SkipPostcommandHooks (class in cmd2.exceptions),

113
span() (cmd2.history.History method), 114
split_on_punctuation()

(cmd2.parsing.StatementParser method),
117

start_session() (cmd2.history.History method),
114

Statement (class in cmd2), 117
statement (cmd2.history.HistoryItem attribute), 115
statement (cmd2.plugin.CommandFinalizationData

attribute), 119
statement (cmd2.plugin.PostcommandData attribute),

119
statement (cmd2.plugin.PostparsingData attribute),

119
statement (cmd2.plugin.PrecommandData attribute),

119
statement_parser (cmd2.Cmd attribute), 91
StatementParser (class in cmd2.parsing), 115
StdSim (class in cmd2.utils), 126
stop (cmd2.plugin.CommandFinalizationData at-

tribute), 119
stop (cmd2.plugin.PostcommandData attribute), 119
stop (cmd2.plugin.PostparsingData attribute), 119
str_search() (cmd2.history.History method), 114
str_to_bool() (in module cmd2.utils), 130
strip_quotes() (in module cmd2.utils), 126
strip_style() (in module cmd2.ansi), 103
style() (in module cmd2.ansi), 103
STYLE_ALWAYS (in module cmd2.ansi), 102
style_aware_wcswidth() (in module cmd2.ansi),

104
style_aware_write() (in module cmd2.ansi), 104
style_error() (in module cmd2.ansi), 104
STYLE_NEVER (in module cmd2.ansi), 102
style_success() (in module cmd2.ansi), 104
STYLE_TERMINAL (in module cmd2.ansi), 102
style_warning() (in module cmd2.ansi), 104
suffix (cmd2.Statement attribute), 118

T
TableCreator (class in cmd2.table_creator), 121
terminate() (cmd2.utils.ProcReader method), 127
terminator (cmd2.Statement attribute), 118

142 Index



cmd2 Documentation, Release 1.3

TextAlignment (class in cmd2.utils), 127
tokenize() (cmd2.parsing.StatementParser method),

117
tokens_for_completion() (cmd2.Cmd method),

101
TOP (cmd2.table_creator.VerticalAlignment attribute),

120
total_width() (cmd2.table_creator.BorderedTable

method), 124
total_width() (cmd2.table_creator.SimpleTable

method), 123
truncate() (cmd2.history.History method), 115
truncate_line() (in module cmd2.utils), 129

U
UNDERLINE_DISABLE (in module cmd2.ansi), 102
UNDERLINE_ENABLE (in module cmd2.ansi), 102
unregister_command_set() (cmd2.Cmd method),

101

V
VerticalAlignment (class in cmd2.table_creator),

120
visible_prompt (cmd2.Cmd attribute), 101

W
wait() (cmd2.utils.ProcReader method), 127
with_argparser() (in module cmd2.decorators),

111
with_argparser_and_unknown_args() (in

module cmd2.decorators), 112
with_argument_list() (in module

cmd2.decorators), 112
with_category() (in module cmd2.decorators), 113
with_default_category() (in module

cmd2.command_definition), 110
write() (cmd2.utils.ByteBuf method), 126
write() (cmd2.utils.StdSim method), 126
write_to_paste_buffer() (in module

cmd2.clipboard), 28

Index 143


	Getting Started
	Migrating from cmd
	Features
	Examples
	Plugins
	Testing
	API Reference
	Meta
	Python Module Index
	Index

