
cmd2 Documentation
Release 0.8.5

Catherine Devlin and Todd Leonhardt

Apr 15, 2018





Contents

1 Resources 3
1.1 Installation Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Extra requirement for macOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Features requiring no modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Features requiring only parameter changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Features requiring application changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Transcript based testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8 Argument Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.9 Integrating cmd2 with external tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.10 cmd2 Application Lifecycle and Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.11 Alternatives to cmd and cmd2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Compatibility 31

3 Indices and tables 33

i



ii



cmd2 Documentation, Release 0.8.5

A python package for building powerful command-line interpreter (CLI) programs. Extends the Python Standard
Library’s cmd package.

The basic use of cmd2 is identical to that of cmd.

1. Create a subclass of cmd2.Cmd. Define attributes and do_* methods to control its behavior. Throughout this
documentation, we will assume that you are naming your subclass App:

from cmd2 import Cmd
class App(Cmd):

# customized attributes and methods here

2. Instantiate App and start the command loop:

app = App()
app.cmdloop()

Note: The tab-completion feature provided by cmd relies on underlying capability provided by GNU readline or an
equivalent library. Linux distros will almost always come with the required library installed. For macOS, we recom-
mend using the gnureadline Python module which includes a statically linked version of GNU readline. Alternatively
on macOS the conda package manager that comes with the Anaconda Python distro can be used to install readline
(preferably from conda-forge) or the Homebrew package manager can be used to to install the readline package.
For Windows, we recommend installing the pyreadline Python module.

Contents 1

https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://pypi.python.org/pypi/gnureadline
https://brew.sh
https://pypi.python.org/pypi/pyreadline


cmd2 Documentation, Release 0.8.5

2 Contents



CHAPTER 1

Resources

• cmd

• cmd2 project page

• project bug tracker

• Florida PyCon 2017: slides, video

These docs will refer to App as your cmd2.Cmd subclass, and app as an instance of App. Of course, in your program,
you may name them whatever you want.

Contents:

1.1 Installation Instructions

This section covers the basics of how to install, upgrade, and uninstall cmd2.

1.1.1 Installing

First you need to make sure you have Python 2.7 or Python 3.4+, pip, and setuptools. Then you can just use pip to
install from PyPI.

Note: Depending on how and where you have installed Python on your system and on what OS you are using, you
may need to have administrator or root privileges to install Python packages. If this is the case, take the necessary
steps required to run the commands in this section as root/admin, e.g.: on most Linux or Mac systems, you can precede
them with sudo:

sudo pip install <package_name>

3

https://docs.python.org/3/library/cmd.html
https://github.com/python-cmd2/cmd2
https://github.com/python-cmd2/cmd2/issues
https://docs.google.com/presentation/d/1LRmpfBt3V-pYQfgQHdczf16F3hcXmhK83tl77R6IJtE
https://www.youtube.com/watch?v=6m0RdpITaeY
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi


cmd2 Documentation, Release 0.8.5

Requirements for Installing

• If you have Python 2 >=2.7.9 or Python 3 >=3.4 installed from python.org, you will already have pip and
setuptools, but may need to upgrade to the latest versions:

On Linux or OS X:

pip install -U pip setuptools

On Windows:

python -m pip install -U pip setuptools

Use pip for Installing

pip is the recommended installer. Installing packages from PyPI with pip is easy:

pip install cmd2

This should also install the required 3rd-party dependencies, if necessary.

Install from GitHub using pip

The latest version of cmd2 can be installed directly from the master branch on GitHub using pip:

pip install -U git+git://github.com/python-cmd2/cmd2.git

This should also install the required 3rd-party dependencies, if necessary.

Install from Debian or Ubuntu repos

We recommend installing from pip, but if you wish to install from Debian or Ubuntu repos this can be done with
apt-get.

For Python 2:

sudo apt-get install python-cmd2

For Python 3:

sudo apt-get install python3-cmd2

This will also install the required 3rd-party dependencies.

Warning: Versions of cmd2 before 0.7.0 should be considered to be of unstable “beta” quality and should not be
relied upon for production use. If you cannot get a version >= 0.7 from your OS repository, then we recommend
installing from either pip or GitHub - see Use pip for Installing or Install from GitHub using pip.

4 Chapter 1. Resources

https://www.python.org
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pip


cmd2 Documentation, Release 0.8.5

Deploy cmd2.py with your project

cmd2 is contained in only one Python file (cmd2.py), so it can be easily copied into your project. The copyright and
license notice must be retained.

This is an option suitable for advanced Python users. You can simply include this file within your project’s hierarchy.
If you want to modify cmd2, this may be a reasonable option. Though, we encourage you to use stock cmd2 and
either composition or inheritance to achieve the same goal.

This approach will obviously NOT automatically install the required 3rd-party dependencies, so you need to make
sure the following Python packages are installed:

• six

• pyparsing

• pyperclip

On Windows, there is an additional dependency:

• pyreadline

1.1.2 Upgrading cmd2

Upgrade an already installed cmd2 to the latest version from PyPI:

pip install -U cmd2

This will upgrade to the newest stable version of cmd2 and will also upgrade any dependencies if necessary.

1.1.3 Uninstalling cmd2

If you wish to permanently uninstall cmd2, this can also easily be done with pip:

pip uninstall cmd2

1.1.4 Extra requirement for Python 3.4 and earlier

cmd2 requires the contextlib2 module for Python 3.4 and earlier. This is used to temporarily redirect stdout and
stderr.

1.1.5 Extra requirement for Python 2.7 only

If you want to be able to pipe the output of commands to a shell command on Python 2.7, then you will need one
additional package installed:

• subprocess32gNU

1.2 Extra requirement for macOS

macOS comes with the libedit library which is similar, but not identical, to GNU Readline. Tab-completion for cmd2
applications is only tested against GNU Readline.

1.2. Extra requirement for macOS 5

https://pypi.python.org/pypi
https://pypi.python.org/pypi/pip
http://thrysoee.dk/editline/


cmd2 Documentation, Release 0.8.5

There are several ways GNU Readline can be installed within a Python environment on a Mac, detailed in the following
subsections.

1.2.1 gnureadline Python module

Install the gnureadline Python module which is statically linked against a specific compatible version of GNU Read-
line:

pip install -U gnureadline

1.2.2 readline via conda

Install the readline package using the conda package manager included with the Anaconda Python distribution:

conda install readline

1.2.3 readline via brew

Install the readline package using the Homebrew package manager (compiles from source):

brew install openssl
brew install pyenv
brew install readline

Then use pyenv to compile Python and link against the installed readline

1.3 Overview

cmd2 is an extension of cmd, the Python Standard Library’s module for creating simple interactive command-line
applications.

cmd2 can be used as a drop-in replacement for cmd. Simply importing cmd2 in place of cmd will add many features
to an application without any further modifications.

Understanding the use of cmd is the first step in learning the use of cmd2. Once you have read the cmd docs, return
here to learn the ways that cmd2 differs from cmd.

Note: cmd2 is not quite a drop-in replacement for cmd. The cmd.emptyline() function is called when an empty
line is entered in response to the prompt. By default, in cmd if this method is not overridden, it repeats and executes
the last nonempty command entered. However, no end user we have encountered views this as expected or desirable
default behavior. Thus, the default behavior in cmd2 is to simply go to the next line and issue the prompt again. At
this time, cmd2 completely ignores empty lines and the base class cmd.emptyline() method never gets called and thus
the emptyline() behavior cannot be overridden.

1.4 Features requiring no modifications

These features are provided “for free” to a cmd-based application simply by replacing import cmd with import
cmd2 as cmd.

6 Chapter 1. Resources

https://pypi.python.org/pypi/gnureadline
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html#cmd.Cmd.emptyline
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html


cmd2 Documentation, Release 0.8.5

1.4.1 Script files

Text files can serve as scripts for your cmd2-based application, with the load, _relative_load, and edit
commands.

Both ASCII and UTF-8 encoded unicode text files are supported.

Simply include one command per line, typed exactly as you would inside a cmd2 application.

1.4.2 Comments

Comments are omitted from the argument list before it is passed to a do_ method. By default, both Python-style and
C-style comments are recognized; you may change this by overriding app.commentGrammars with a different
pyparsing grammar (see the arg_print example for specifically how to to this).

Comments can be useful in Script files, but would be pointless within an interactive session.

def do_speak(self, arg):
self.stdout.write(arg + '\n')

(Cmd) speak it was /* not */ delicious! # Yuck!
it was delicious!

1.4.3 Startup Initialization Script

You can load and execute commands from a startup initialization script by passing a file path to the
startup_script argument to the cmd2.Cmd.__init__() method like so:

class StartupApp(cmd2.Cmd):
def __init__(self):

cmd2.Cmd.__init__(self, startup_script='.cmd2rc')

See the AliasStartup example for a demonstration.

1.4.4 Commands at invocation

You can send commands to your app as you invoke it by including them as extra arguments to the program. cmd2
interprets each argument as a separate command, so you should enclose each command in quotation marks if it is more
than a one-word command.

cat@eee:~/proj/cmd2/example$ python example.py "say hello" "say Gracie" quit
hello
Gracie
cat@eee:~/proj/cmd2/example$

Note: If you wish to disable cmd2’s consumption of command-line arguments, you can do so by setting the
allow_cli_args attribute of your cmd2.Cmd class instance to False. This would be useful, for example, if
you wish to use something like Argparse to parse the overall command line arguments for your application:

from cmd2 import Cmd
class App(Cmd):

def __init__(self):
self.allow_cli_args = False

1.4. Features requiring no modifications 7

http://pyparsing.wikispaces.com/
https://github.com/python-cmd2/cmd2/blob/master/examples/arg_print.py
https://github.com/python-cmd2/cmd2/blob/master/examples/alias_startup.py
https://docs.python.org/3/library/argparse.html


cmd2 Documentation, Release 0.8.5

1.4.5 Output redirection

As in a Unix shell, output of a command can be redirected:

• sent to a file with >, as in mycommand args > filename.txt

• piped (|) as input to operating-system commands, as in mycommand args | wc

• sent to the paste buffer, ready for the next Copy operation, by ending with a bare >, as in mycommand args
>.. Redirecting to paste buffer requires software to be installed on the operating system, pywin32 on Windows
or xclip on *nix.

If your application depends on mathematical syntax, > may be a bad choice for redirecting output - it will prevent
you from using the greater-than sign in your actual user commands. You can override your app’s value of self.
redirector to use a different string for output redirection:

class MyApp(cmd2.Cmd):
redirector = '->'

(Cmd) say line1 -> out.txt
(Cmd) say line2 ->-> out.txt
(Cmd) !cat out.txt
line1
line2

Note: If you wish to disable cmd2’s output redirection and pipes features, you can do so by setting the
allow_redirection attribute of your cmd2.Cmd class instance to False. This would be useful, for exam-
ple, if you want to restrict the ability for an end user to write to disk or interact with shell commands for security
reasons:

from cmd2 import Cmd
class App(Cmd):

def __init__(self):
self.allow_redirection = False

cmd2’s parser will still treat the >, >>, and | symbols as output redirection and pipe symbols and will strip arguments
after them from the command line arguments accordingly. But output from a command will not be redirected to a file
or piped to a shell command.

1.4.6 Python

The py command will run its arguments as a Python command. Entered without arguments, it enters an interactive
Python session. That session can call “back” to your application with cmd(""). Through self, it also has access
to your application instance itself which can be extremely useful for debugging. (If giving end-users this level of
introspection is inappropriate, the locals_in_py parameter can be set to False and removed from the settable
dictionary. See see Other user-settable parameters)

(Cmd) py print("-".join("spelling"))
s-p-e-l-l-i-n-g
(Cmd) py
Python 2.6.4 (r264:75706, Dec 7 2009, 18:45:15)
[GCC 4.4.1] on linux2

8 Chapter 1. Resources

http://sourceforge.net/projects/pywin32/
http://www.cyberciti.biz/faq/xclip-linux-insert-files-command-output-intoclipboard/


cmd2 Documentation, Release 0.8.5

Type "help", "copyright", "credits" or "license" for more information.
(CmdLineApp)

py <command>: Executes a Python command.
py: Enters interactive Python mode.
End with `Ctrl-D` (Unix) / `Ctrl-Z` (Windows), `quit()`, 'exit()`.
Non-python commands can be issued with `cmd("your command")`.

>>> import os
>>> os.uname()
('Linux', 'eee', '2.6.31-19-generic', '#56-Ubuntu SMP Thu Jan 28 01:26:53 UTC 2010',
→˓'i686')
>>> cmd("say --piglatin {os}".format(os=os.uname()[0]))
inuxLay
>>> self.prompt
'(Cmd) '
>>> self.prompt = 'Python was here > '
>>> quit()
Python was here >

Using the py command is tightly integrated with your main cmd2 application and any variables created or changed
will persist for the life of the application:

(Cmd) py x = 5
(Cmd) py print(x)
5

The py command also allows you to run Python scripts via py run('myscript.py'). This provides a more
complicated and more powerful scripting capability than that provided by the simple text file scripts discussed in
Script files. Python scripts can include conditional control flow logic. See the python_scripting.py cmd2 application
and the script_conditional.py script in the examples source code directory for an example of how to achieve this
in your own applications.

Using py to run scripts directly is considered deprecated. The newer pyscript command is superior for doing this
in two primary ways:

• it supports tab-completion of file system paths

• it has the ability to pass command-line arguments to the scripts invoked

There are no disadvantages to using pyscript as opposed to py run(). A simple example of using pyscript
is shown below along with the examples/arg_printer.py script:

(Cmd) pyscript examples/arg_printer.py foo bar baz
Running Python script 'arg_printer.py' which was called with 3 arguments
arg 1: 'foo'
arg 2: 'bar'
arg 3: 'baz'

Note: If you want to be able to pass arguments with spaces to scripts, then we strongly recommend setting the cmd2
global variable USE_ARG_LIST to True in your application using the set_use_arg_list function. This passes
all arguments to @options commands as a list of strings instead of a single string.

Once this option is set, you can then put arguments in quotes like so:

(Cmd) pyscript examples/arg_printer.py hello '23 fnord'
Running Python script 'arg_printer.py' which was called with 2 arguments

1.4. Features requiring no modifications 9



cmd2 Documentation, Release 0.8.5

arg 1: 'hello'
arg 2: '23 fnord'

1.4.7 IPython (optional)

If IPython is installed on the system and the cmd2.Cmd class is instantiated with use_ipython=True, then the
optional ipy command will be present:

from cmd2 import Cmd
class App(Cmd):

def __init__(self):
Cmd.__init__(self, use_ipython=True)

The ipy command enters an interactive IPython session. Similar to an interactive Python session, this shell can access
your application instance via self and any changes to your application made via self will persist. However, any
local or global variable created within the ipy shell will not persist. Within the ipy shell, you cannot call “back” to
your application with cmd(""), however you can run commands directly like so:

self.onecmd_plus_hooks('help')

IPython provides many advantages, including:

• Comprehensive object introspection

• Get help on objects with ?

• Extensible tab completion, with support by default for completion of python variables and keywords

The object introspection and tab completion make IPython particularly efficient for debugging as well as for interactive
experimentation and data analysis.

1.4.8 Searchable command history

All cmd-based applications have access to previous commands with the up- and down- arrow keys.

All cmd-based applications on systems with the readline module also provide Readline Emacs editing mode. With
this you can, for example, use Ctrl-r to search backward through the readline history.

cmd2 adds the option of making this readline history persistent via optional arguments to cmd2.Cmd.__init__():

cmd2 makes a third type of history access available with the history command:

1.4.9 Quitting the application

cmd2 pre-defines a quit command for you. It’s trivial, but it’s one less thing for you to remember.

1.4.10 Misc. pre-defined commands

Several generically useful commands are defined with automatically included do_ methods.

( ! is a shortcut for shell; thus !ls is equivalent to shell ls.)

10 Chapter 1. Resources

http://ipython.readthedocs.io
http://ipython.readthedocs.io
http://ipython.readthedocs.io
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
http://readline.kablamo.org/emacs.html


cmd2 Documentation, Release 0.8.5

1.4.11 Transcript-based testing

A transcript is both the input and output of a successful session of a cmd2-based app which is saved to a text file. The
transcript can be played back into the app as a unit test.

$ python example.py --test transcript_regex.txt
.
----------------------------------------------------------------------
Ran 1 test in 0.013s

OK

See Transcript based testing for more details.

1.4.12 Tab-Completion

cmd2 adds tab-completion of file system paths for all built-in commands where it makes sense, including:

• edit

• load

• pyscript

• shell

cmd2 also adds tab-completion of shell commands to the shell command.

Additionally, it is trivial to add identical file system path completion to your own custom commands. Suppose you
have defined a custom command foo by implementing the do_foo method. To enable path completion for the foo
command, then add a line of code similar to the following to your class which inherits from cmd2.Cmd:

complete_foo = self.path_complete

This will effectively define the complete_foo readline completer method in your class and make it utilize the same
path completion logic as the built-in commands.

The built-in logic allows for a few more advanced path completion capabilities, such as cases where you only want to
match directories. Suppose you have a custom command bar implemented by the do_bar method. You can enable
path completion of directories only for this command by adding a line of code similar to the following to your class
which inherits from cmd2.Cmd:

# Make sure you have an "import functools" somewhere at the top
complete_bar = functools.partialmethod(cmd2.Cmd.path_complete, dir_only=True)

# Since Python 2 does not have functools.partialmethod(), you can achieve the
# same thing by implementing a tab completion function
def complete_bar(self, text, line, begidx, endidx):

return self.path_complete(text, line, begidx, endidx, dir_only=True)

1.5 Features requiring only parameter changes

Several aspects of a cmd2 application’s behavior can be controlled simply by setting attributes of App. A parameter
can also be changed at runtime by the user if its name is included in the dictionary app.settable. (To define your
own user-settable parameters, see Other user-settable parameters)

1.5. Features requiring only parameter changes 11



cmd2 Documentation, Release 0.8.5

1.5.1 Shortcuts

Command shortcuts for long command names and common commands can make life more convenient for your users.
Shortcuts are used without a space separating them from their arguments, like !ls. By default, the following shortcuts
are defined:

? help

! shell: run as OS-level command

@ load script file

@@ load script file; filename is relative to current script location

To define more shortcuts, update the dict App.shortcuts with the {‘shortcut’: ‘command_name’} (omit do_):

class App(Cmd2):
def __init__(self):

# Make sure you update the shortcuts attribute before calling the super class __
→˓init__

self.shortcuts.update({'*': 'sneeze', '~': 'squirm'})

# Make sure to call this super class __init__ after updating shortcuts
cmd2.Cmd.__init__(self)

Warning: Shortcuts need to be created by updating the shortcuts dictionary attribute prior to calling the
cmd2.Cmd super class __init__() method. Moreover, that super class init method needs to be called after
updating the shortcuts attribute This warning applies in general to many other attributes which are not settable
at runtime such as commentGrammars, multilineCommands, etc.

1.5.2 Aliases

In addition to shortcuts, cmd2 provides a full alias feature via the alias command which is similar to the alias
command in Bash.

The syntax to create an alias is alias <name> <value>. value can contain spaces and does not need to be
quoted. Ex: alias ls !ls -lF

If alias is run without arguments, then a list of all aliases will be printed to stdout and are in the proper alias
command syntax, meaning they can easily be reused.

The unalias is used to clear aliases. Using the -a flag will clear all aliases. Otherwise provide a list of aliases to
clear. Ex: unalias ls cd pwd will clear the aliases called ls, cd, and pwd.

1.5.3 Default to shell

Every cmd2 application can execute operating-system level (shell) commands with shell or a ! shortcut:

(Cmd) shell which python
/usr/bin/python
(Cmd) !which python
/usr/bin/python

However, if the parameter default_to_shell is True, then every command will be attempted on the operating
system. Only if that attempt fails (i.e., produces a nonzero return value) will the application’s own default method
be called.

12 Chapter 1. Resources



cmd2 Documentation, Release 0.8.5

(Cmd) which python
/usr/bin/python
(Cmd) my dog has fleas
sh: my: not found

*** Unknown syntax: my dog has fleas

1.5.4 Quit on SIGINT

On many shells, SIGINT (most often triggered by the user pressing Ctrl+C) only cancels the current line, not the entire
command loop. By default, a cmd2 application will quit on receiving this signal. However, if quit_on_sigint is
set to False, then the current line will simply be cancelled.

(Cmd) typing a comma^C
(Cmd)

1.5.5 Timing

Setting App.timing to True outputs timing data after every application command is executed. The user can set
this parameter during application execution. (See Other user-settable parameters)

1.5.6 Echo

If True, each command the user issues will be repeated to the screen before it is executed. This is particularly useful
when running scripts.

1.5.7 Debug

Setting App.debug to True will produce detailed error stacks whenever the application generates an error. The user
can set this parameter during application execution. (See Other user-settable parameters)

1.5.8 Other user-settable parameters

A list of all user-settable parameters, with brief comments, is viewable from within a running application with:

(Cmd) set --long
colors: True # Colorized output (*nix only)
continuation_prompt: > # On 2nd+ line of input
debug: False # Show full error stack on error
echo: False # Echo command issued into output
editor: vim # Program used by ``edit``
feedback_to_output: False # include nonessentials in `|`, `>` results
locals_in_py: True # Allow access to your application in py via self
prompt: (Cmd) # The prompt issued to solicit input
quiet: False # Don't print nonessential feedback
timing: False # Report execution times

Any of these user-settable parameters can be set while running your app with the set command like so:

set colors False

1.5. Features requiring only parameter changes 13



cmd2 Documentation, Release 0.8.5

1.6 Features requiring application changes

1.6.1 Multiline commands

Command input may span multiple lines for the commands whose names are listed in the parameter app.
multilineCommands. These commands will be executed only after the user has entered a terminator. By default,
the command terminators is ;; replacing or appending to the list app.terminators allows different terminators.
A blank line is always considered a command terminator (cannot be overridden).

1.6.2 Parsed statements

cmd2 passes arg to a do_ method (or default) as a ParsedString, a subclass of string that includes an attribute
parsed. parsed is a pyparsing.ParseResults object produced by applying a pyparsing grammar applied
to arg. It may include:

command Name of the command called

raw Full input exactly as typed.

terminator Character used to end a multiline command

suffix Remnant of input after terminator

def do_parsereport(self, arg):
self.stdout.write(arg.parsed.dump() + '\n')

(Cmd) parsereport A B /* C */ D; E
['parsereport', 'A B D', ';', 'E']
- args: A B D
- command: parsereport
- raw: parsereport A B /* C */ D; E
- statement: ['parsereport', 'A B D', ';']

- args: A B D
- command: parsereport
- terminator: ;

- suffix: E
- terminator: ;

If parsed does not contain an attribute, querying for it will return None. (This is a characteristic of pyparsing.
ParseResults.)

The parsing grammar and process currently employed by cmd2 is stable, but is likely significantly more complex than
it needs to be. Future cmd2 releases may change it somewhat (hopefully reducing complexity).

(Getting arg as a ParsedString is technically “free”, in that it requires no application changes from the cmd
standard, but there will be no result unless you change your application to use arg.parsed.)

1.6.3 Environment parameters

Your application can define user-settable parameters which your code can reference. First create a class attribute with
the default value. Then update the settable dictionary with your setting name and a short description before you
initialize the superclass. Here’s an example, from examples/environment.py:

#!/usr/bin/env python
# coding=utf-8

14 Chapter 1. Resources

http://pyparsing.wikispaces.com/
https://docs.python.org/3/library/cmd.html


cmd2 Documentation, Release 0.8.5

"""
A sample application for cmd2 demonstrating customized environment parameters
"""

from cmd2 import Cmd

class EnvironmentApp(Cmd):
""" Example cmd2 application. """

degrees_c = 22
sunny = False

def __init__(self):
self.settable.update({'degrees_c': 'Temperature in Celsius'})
self.settable.update({'sunny': 'Is it sunny outside?'})
Cmd.__init__(self)

def do_sunbathe(self, arg):
if self.degrees_c < 20:

result = "It's {} C - are you a penguin?".format(self.degrees_c)
elif not self.sunny:

result = 'Too dim.'
else:

result = 'UV is bad for your skin.'
self.poutput(result)

def _onchange_degrees_c(self, old, new):
# if it's over 40C, it's gotta be sunny, right?
if new > 40:

self.sunny = True

if __name__ == '__main__':
c = EnvironmentApp()
c.cmdloop()

If you want to be notified when a setting changes (as we do above), then define a method
_onchange_{setting}(). This method will be called after the user changes a setting, and will receive
both the old value and the new value.

(Cmd) set --long | grep sunny
sunny: False # Is it sunny outside?
(Cmd) set --long | grep degrees
degrees_c: 22 # Temperature in Celsius
(Cmd) sunbathe
Too dim.
(Cmd) set degrees_c 41
degrees_c - was: 22
now: 41
(Cmd) set sunny
sunny: True
(Cmd) sunbathe
UV is bad for your skin.
(Cmd) set degrees_c 13
degrees_c - was: 41
now: 13
(Cmd) sunbathe

1.6. Features requiring application changes 15



cmd2 Documentation, Release 0.8.5

It's 13 C - are you a penguin?

1.6.4 Commands with flags

All do_ methods are responsible for interpreting the arguments passed to them. However, cmd2 lets a do_ methods
accept Unix-style flags. It uses argparse to parse the flags, and they work the same way as for that module.

cmd2 defines a few decorators which change the behavior of how arguments get parsed for and passed to a do_
method. See the section Argument Processing for more information.

Controlling how arguments are parsed for commands with flags

There are a couple functions which can globally effect how arguments are parsed for commands with flags:

1.6.5 poutput, pfeedback, perror, ppaged

Standard cmd applications produce their output with self.stdout.write('output') (or with print,
but print decreases output flexibility). cmd2 applications can use self.poutput('output'), self.
pfeedback('message'), self.perror('errmsg'), and self.ppaged('text') instead. These
methods have these advantages:

• Handle output redirection to file and/or pipe appropriately

• More concise

– .pfeedback() destination is controlled by quiet parameter.

• Option to display long output using a pager via ppaged()

1.6.6 color

Text output can be colored by wrapping it in the colorize method.

1.6.7 quiet

Controls whether self.pfeedback('message') output is suppressed; useful for non-essential feedback that
the user may not always want to read. quiet is only relevant if app.pfeedback is sometimes used.

1.6.8 select

Presents numbered options to user, as bash select.

app.select is called from within a method (not by the user directly; it is app.select, not app.do_select).

def do_eat(self, arg):
sauce = self.select('sweet salty', 'Sauce? ')
result = '{food} with {sauce} sauce, yum!'
result = result.format(food=arg, sauce=sauce)
self.stdout.write(result + '\n')

16 Chapter 1. Resources

https://docs.python.org/3/library/argparse.html


cmd2 Documentation, Release 0.8.5

(Cmd) eat wheaties
1. sweet
2. salty

Sauce? 2
wheaties with salty sauce, yum!

1.7 Transcript based testing

A transcript is both the input and output of a successful session of a cmd2-based app which is saved to a text file. With
no extra work on your part, your app can play back these transcripts as a unit test. Transcripts can contain regular
expressions, which provide the flexibility to match responses from commands that produce dynamic or variable output.

1.7.1 Creating a transcript

Automatically

A transcript can automatically generated based upon commands previously executed in the history:

(Cmd) help
...
(Cmd) help history
...
(Cmd) history 1:2 -t transcript.txt
2 commands and outputs saved to transcript file 'transcript.txt'

This is by far the easiest way to generate a transcript.

Warning: Make sure you use the poutput() method in your cmd2 application for generating command output.
This method of the cmd2.Cmd class ensure that output is properly redirected when redirecting to a file, piping to
a shell command, and when generating a transcript.

Manually

Here’s a transcript created from python examples/example.py:

(Cmd) say -r 3 Goodnight, Gracie
Goodnight, Gracie
Goodnight, Gracie
Goodnight, Gracie
(Cmd) mumble maybe we could go to lunch
like maybe we ... could go to hmmm lunch
(Cmd) mumble maybe we could go to lunch
well maybe we could like go to er lunch right?

This transcript has three commands: they are on the lines that begin with the prompt. The first command looks like
this:

(Cmd) say -r 3 Goodnight, Gracie

1.7. Transcript based testing 17



cmd2 Documentation, Release 0.8.5

Following each command is the output generated by that command.

The transcript ignores all lines in the file until it reaches the first line that begins with the prompt. You can take
advantage of this by using the first lines of the transcript as comments:

# Lines at the beginning of the transcript that do not
; start with the prompt i.e. '(Cmd) ' are ignored.
/* You can use them for comments. */

All six of these lines before the first prompt are treated as comments.

(Cmd) say -r 3 Goodnight, Gracie
Goodnight, Gracie
Goodnight, Gracie
Goodnight, Gracie
(Cmd) mumble maybe we could go to lunch
like maybe we ... could go to hmmm lunch
(Cmd) mumble maybe we could go to lunch
maybe we could like go to er lunch right?

In this example I’ve used several different commenting styles, and even bare text. It doesn’t matter what you put on
those beginning lines. Everything before:

(Cmd) say -r 3 Goodnight, Gracie

will be ignored.

1.7.2 Regular Expressions

If we used the above transcript as-is, it would likely fail. As you can see, the mumble command doesn’t always return
the same thing: it inserts random words into the input.

Regular expressions can be included in the response portion of a transcript, and are surrounded by slashes:

(Cmd) mumble maybe we could go to lunch
/.*\bmaybe\b.*\bcould\b.*\blunch\b.*/
(Cmd) mumble maybe we could go to lunch
/.*\bmaybe\b.*\bcould\b.*\blunch\b.*/

Without creating a tutorial on regular expressions, this one matches anything that has the words maybe, could, and
lunch in that order. It doesn’t ensure that we or go or to appear in the output, but it does work if mumble happens
to add words to the beginning or the end of the output.

Since the output could be multiple lines long, cmd2 uses multiline regular expression matching, and also uses the
DOTALL flag. These two flags subtly change the behavior of commonly used special characters like ., ^ and $, so
you may want to double check the Python regular expression documentation.

If your output has slashes in it, you will need to escape those slashes so the stuff between them is not interpred as a
regular expression. In this transcript:

(Cmd) say cd /usr/local/lib/python3.6/site-packages
/usr/local/lib/python3.6/site-packages

the output contains slashes. The text between the first slash and the second slash, will be interpreted as a regular
expression, and those two slashes will not be included in the comparison. When replayed, this transcript would
therefore fail. To fix it, we could either write a regular expression to match the path instead of specifying it verbatim,
or we can escape the slashes:

18 Chapter 1. Resources

https://docs.python.org/3/library/re.html


cmd2 Documentation, Release 0.8.5

(Cmd) say cd /usr/local/lib/python3.6/site-packages
\/usr\/local\/lib\/python3.6\/site-packages

Warning: Be aware of trailing spaces and newlines. Your commands might output trailing spaces which are
impossible to see. Instead of leaving them invisible, you can add a regular expression to match them, so that you
can see where they are when you look at the transcript:

(Cmd) set prompt
prompt: (Cmd)/ /

Some terminal emulators strip trailing space when you copy text from them. This could make the actual data
generated by your app different than the text you pasted into the transcript, and it might not be readily obvious why
the transcript is not passing. Consider using Output redirection to the clipboard or to a file to ensure you accurately
capture the output of your command.

If you aren’t using regular expressions, make sure the newlines at the end of your transcript exactly match the
output of your commands. A common cause of a failing transcript is an extra or missing newline.

If you are using regular expressions, be aware that depending on how you write your regex, the newlines after the
regex may or may not matter. \Z matches after the newline at the end of the string, whereas $ matches the end of
the string or just before a newline.

1.7.3 Running a transcript

Once you have created a transcript, it’s easy to have your application play it back and check the output. From within
the examples/ directory:

$ python example.py --test transcript_regex.txt
.
----------------------------------------------------------------------
Ran 1 test in 0.013s

OK

The output will look familiar if you use unittest, because that’s exactly what happens. Each command in the
transcript is run, and we assert the output matches the expected result from the transcript.

Note: If you have set allow_cli_args to False in order to disable parsing of command line arguments at invoca-
tion, then the use of -t or --test to run transcript testing is automatically disabled. In this case, you can alternatively
provide a value for the optional transcript_files when constructing the instance of your cmd2.Cmd derived
class in order to cause a transcript test to run:

from cmd2 import Cmd
class App(Cmd):

# customized attributes and methods here

if __name__ == '__main__':
app = App(transcript_files=['exampleSession.txt'])
app.cmdloop()

1.7. Transcript based testing 19



cmd2 Documentation, Release 0.8.5

1.8 Argument Processing

cmd2makes it easy to add sophisticated argument processing to your commands using the argparse python module.
cmd2 handles the following for you:

1. Parsing input and quoted strings like the Unix shell

2. Parse the resulting argument list using an instance of argparse.ArgumentParser that you provide

3. Passes the resulting argparse.Namespace object to your command function

4. Adds the usage message from the argument parser to your command.

5. Checks if the -h/--help option is present, and if so, display the help message for the command

These features are all provided by the @with_argparser decorator which is importable from cmd2.

See the either the argprint or argparse example to learn more about how to use the various cmd2 argument processing
decorators in your cmd2 applications.

1.8.1 Using the argument parser decorator

For each command in the cmd2 subclass which requires argument parsing, create an instance of argparse.
ArgumentParser() which can parse the input appropriately for the command. Then decorate the command
method with the @with_argparser decorator, passing the argument parser as the first parameter to the decorator.
This changes the second argumen to the command method, which will contain the results of ArgumentParser.
parse_args().

Here’s what it looks like:

import argparse
from cmd2 import with_argparser

argparser = argparse.ArgumentParser()
argparser.add_argument('-p', '--piglatin', action='store_true', help='atinLay')
argparser.add_argument('-s', '--shout', action='store_true', help='N00B EMULATION MODE
→˓')
argparser.add_argument('-r', '--repeat', type=int, help='output [n] times')
argparser.add_argument('word', nargs='?', help='word to say')

@with_argparser(argparser)
def do_speak(self, opts)

"""Repeats what you tell me to."""
arg = opts.word
if opts.piglatin:

arg = '%s%say' % (arg[1:], arg[0])
if opts.shout:

arg = arg.upper()
repetitions = opts.repeat or 1
for i in range(min(repetitions, self.maxrepeats)):

self.poutput(arg)

Note: The @with_argparser decorator sets the prog variable in the argument parser based on the name of the
method it is decorating. This will override anything you specify in prog variable when creating the argument parser.

20 Chapter 1. Resources

https://github.com/python-cmd2/cmd2/blob/master/examples/arg_print.py
https://github.com/python-cmd2/cmd2/blob/master/examples/argparse_example.py


cmd2 Documentation, Release 0.8.5

1.8.2 Help Messages

By default, cmd2 uses the docstring of the command method when a user asks for help on the command. When
you use the @with_argparser decorator, the docstring for the do_* method is used to set the description for the
argparse.ArgumentParser is With this code:

import argparse
from cmd2 import with_argparser

argparser = argparse.ArgumentParser()
argparser.add_argument('tag', help='tag')
argparser.add_argument('content', nargs='+', help='content to surround with tag')
@with_argparser(argparser)
def do_tag(self, args):

"""create a html tag"""
self.stdout.write('<{0}>{1}</{0}>'.format(args.tag, ' '.join(args.content)))
self.stdout.write('\n')

The help tag command displays:

usage: tag [-h] tag content [content ...]

create a html tag

positional arguments:
tag tag
content content to surround with tag

optional arguments:
-h, --help show this help message and exit

If you would prefer you can set the description while instantiating the argparse.ArgumentParser and
leave the docstring on your method empty:

import argparse
from cmd2 import with_argparser

argparser = argparse.ArgumentParser(description='create an html tag')
argparser.add_argument('tag', help='tag')
argparser.add_argument('content', nargs='+', help='content to surround with tag')
@with_argparser(argparser)
def do_tag(self, args):

self.stdout.write('<{0}>{1}</{0}>'.format(args.tag, ' '.join(args.content)))
self.stdout.write('\n')

Now when the user enters help tag they see:

usage: tag [-h] tag content [content ...]

create an html tag

positional arguments:
tag tag
content content to surround with tag

optional arguments:
-h, --help show this help message and exit

1.8. Argument Processing 21



cmd2 Documentation, Release 0.8.5

To add additional text to the end of the generated help message, use the epilog variable:

import argparse
from cmd2 import with_argparser

argparser = argparse.ArgumentParser(description='create an html tag',
epilog='This command can not generate tags with

→˓no content, like <br/>.')
argparser.add_argument('tag', help='tag')
argparser.add_argument('content', nargs='+', help='content to surround with tag')
@with_argparser(argparser)
def do_tag(self, args):

self.stdout.write('<{0}>{1}</{0}>'.format(args.tag, ' '.join(args.content)))
self.stdout.write('\n')

Which yields:

usage: tag [-h] tag content [content ...]

create an html tag

positional arguments:
tag tag
content content to surround with tag

optional arguments:
-h, --help show this help message and exit

This command can not generate tags with no content, like <br/>

1.8.3 Grouping Commands

By default, the help command displays:

Documented commands (type help <topic>):
========================================
alias findleakers pyscript sessions status vminfo
config help quit set stop which
connect history redeploy shell thread_dump
deploy list resources shortcuts unalias
edit load restart sslconnectorciphers undeploy
expire py serverinfo start version

If you have a large number of commands, you can optionally group your commands into categories. Here’s the output
from the example help_categories.py:

Documented commands (type help <topic>):

Application Management
======================
deploy findleakers redeploy sessions stop
expire list restart start undeploy

Connecting
==========
connect which

22 Chapter 1. Resources



cmd2 Documentation, Release 0.8.5

Server Information
==================
resources serverinfo sslconnectorciphers status thread_dump vminfo

Other
=====
alias edit history py quit shell unalias
config help load pyscript set shortcuts version

There are 2 methods of specifying command categories, using the @with_category decorator or with the
categorize() function. Once a single command category is detected, the help output switches to a categorized
mode of display. All commands with an explicit category defined default to the category Other.

Using the @with_category decorator:

@with_category(CMD_CAT_CONNECTING)
def do_which(self, _):

"""Which command"""
self.poutput('Which')

Using the categorize() function:

You can call with a single function:

def do_connect(self, _):
"""Connect command"""
self.poutput('Connect')

# Tag the above command functions under the category Connecting
categorize(do_connect, CMD_CAT_CONNECTING)

Or with an Iterable container of functions:

def do_undeploy(self, _):
"""Undeploy command"""
self.poutput('Undeploy')

def do_stop(self, _):
"""Stop command"""
self.poutput('Stop')

def do_findleakers(self, _):
"""Find Leakers command"""
self.poutput('Find Leakers')

# Tag the above command functions under the category Application Management
categorize((do_undeploy,

do_stop,
do_findleakers), CMD_CAT_APP_MGMT)

The help command also has a verbose option (help -v or help --verbose) that combines the help categories
with per-command Help Messages:

Documented commands (type help <topic>):

Application Management
================================================================================
deploy Deploy command

1.8. Argument Processing 23



cmd2 Documentation, Release 0.8.5

expire Expire command
findleakers Find Leakers command
list List command
redeploy Redeploy command
restart usage: restart [-h] {now,later,sometime,whenever}
sessions Sessions command
start Start command
stop Stop command
undeploy Undeploy command

Connecting
================================================================================
connect Connect command
which Which command

Server Information
================================================================================
resources Resources command
serverinfo Server Info command
sslconnectorciphers SSL Connector Ciphers command is an example of a command that
→˓contains

multiple lines of help information for the user. Each line of
→˓help in a

contiguous set of lines will be printed and aligned in the
→˓verbose output

provided with 'help --verbose'
status Status command
thread_dump Thread Dump command
vminfo VM Info command

Other
================================================================================
alias Define or display aliases
config Config command
edit Edit a file in a text editor.
help List available commands with "help" or detailed help with "help
→˓cmd".
history usage: history [-h] [-r | -e | -s | -o FILE | -t TRANSCRIPT] [arg]
load Runs commands in script file that is encoded as either ASCII or
→˓UTF-8 text.
py Invoke python command, shell, or script
pyscript Runs a python script file inside the console
quit Exits this application.
set usage: set [-h] [-a] [-l] [settable [settable ...]]
shell Execute a command as if at the OS prompt.
shortcuts Lists shortcuts (aliases) available.
unalias Unsets aliases
version Version command

1.8.4 Receiving an argument list

The default behavior of cmd2 is to pass the user input directly to your do_* methods as a string. If you don’t want
to use the full argument parser support outlined above, you can still have cmd2 apply shell parsing rules to the user
input and pass you a list of arguments instead of a string. Apply the @with_argument_list decorator to those
methods that should receive an argument list instead of a string:

24 Chapter 1. Resources



cmd2 Documentation, Release 0.8.5

from cmd2 import with_argument_list

class CmdLineApp(cmd2.Cmd):
""" Example cmd2 application. """

def do_say(self, cmdline):
# cmdline contains a string
pass

@with_argument_list
def do_speak(self, arglist):

# arglist contains a list of arguments
pass

1.8.5 Using the argument parser decorator and also receiving a a list of unknown
positional arguments

If you want all unknown arguments to be passed to your command as a list of strings, then decorate the command
method with the @with_argparser_and_unknown_args decorator.

Here’s what it looks like:

import argparse
from cmd2 import with_argparser_and_unknown_args

dir_parser = argparse.ArgumentParser()
dir_parser.add_argument('-l', '--long', action='store_true', help="display in long
→˓format with one item per line")

@with_argparser_and_unknown_args(dir_parser)
def do_dir(self, args, unknown):

"""List contents of current directory."""
# No arguments for this command
if unknown:

self.perror("dir does not take any positional arguments:", traceback_
→˓war=False)

self.do_help('dir')
self._last_result = CmdResult('', 'Bad arguments')
return

# Get the contents as a list
contents = os.listdir(self.cwd)

...

1.8.6 Sub-commands

Sub-commands are supported for commands using either the @with_argparser or
@with_argparser_and_unknown_args decorator. The syntax for supporting them is based on argparse
sub-parsers.

Also, a convenience function called cmd_with_subs_completer is available to easily add tab completion to
functions that implement subcommands. By setting this as the completer of the base command function, the correct
completer for the chosen subcommand will be called.

1.8. Argument Processing 25



cmd2 Documentation, Release 0.8.5

See the subcommands example to learn more about how to use sub-commands in your cmd2 application.
This example also demonstrates usage of cmd_with_subs_completer. In addition, the docstring for
cmd_with_subs_completer offers more details.

1.8.7 Deprecated optparse support

The optparse library has been deprecated since Python 2.7 (released on July 3rd 2010) and Python 3.2 (released on
February 20th, 2011). optparse is still included in the python standard library, but the documentation recommends
using argparse instead.

cmd2 includes a decorator which can parse arguments using optparse. This decorator is deprecated just like the
optparse library.

Here’s an example:

from optparse import make_option
from cmd2 import options

opts = [make_option('-p', '--piglatin', action="store_true", help="atinLay"),
make_option('-s', '--shout', action="store_true", help="N00B EMULATION MODE"),
make_option('-r', '--repeat', type="int", help="output [n] times")]

@options(opts, arg_desc='(text to say)')
def do_speak(self, arg, opts=None):
"""Repeats what you tell me to."""
arg = ''.join(arg)
if opts.piglatin:

arg = '%s%say' % (arg[1:], arg[0])
if opts.shout:

arg = arg.upper()
repetitions = opts.repeat or 1
for i in range(min(repetitions, self.maxrepeats)):

self.poutput(arg)

The optparse decorator performs the following key functions for you:

1. Use shlex to split the arguments entered by the user.

2. Parse the arguments using the given optparse options.

3. Replace the __doc__ string of the decorated function (i.e. do_speak) with the help string generated by optparse.

4. Call the decorated function (i.e. do_speak) passing an additional parameter which contains the parsed options.

1.9 Integrating cmd2 with external tools

Throughout this documentation we have focused on the 90% use case, that is the use case we believe around 90+%
of our user base is looking for. This focuses on ease of use and the best out-of-the-box experience where developers
get the most functionality for the least amount of effort. We are talking about running cmd2 applications with the
cmdloop() method:

from cmd2 import Cmd
class App(Cmd):

# customized attributes and methods here
app = App()
app.cmdloop()

26 Chapter 1. Resources

https://github.com/python-cmd2/cmd2/blob/master/examples/subcommands.py


cmd2 Documentation, Release 0.8.5

However, there are some limitations to this way of using cmd2, mainly that cmd2 owns the inner loop of a program.
This can be unnecessarily restrictive and can prevent using libraries which depend on controlling their own event loop.

1.9.1 Integrating cmd2 with event loops

Many Python concurrency libraries involve or require an event loop which they are in control of such as asyncio,
gevent, Twisted, etc.

cmd2 applications can be executed in a fashion where cmd2 doesn’t own the main loop for the program by using code
like the following:

import cmd2

class Cmd2EventBased(cmd2.Cmd):
def __init__(self):

cmd2.Cmd.__init__(self)

# ... your class code here ...

if __name__ == '__main__':
app = Cmd2EventBased()
app.preloop()

# Do this within whatever event loop mechanism you wish to run a single command
cmd_line_text = "help history"
app.runcmds_plus_hooks([cmd_line_text])

app.postloop()

The runcmds_plus_hooks() method is a convenience method to run multiple commands via onecmd_plus_hooks().
It properly deals with load commands which under the hood put commands in a FIFO queue as it reads them in from
a script file.

The onecmd_plus_hooks() method will do the following to execute a single cmd2 command in a normal fashion:

1. Parse the command line text

2. Execute postparsing_precmd()

3. Add the command to the history

4. Apply output redirection, if present

5. Execute precmd()

6. Execute onecmd() - this is what actually runs the command

7. Execute postcmd()

8. Undo output rediriection (if present) and perform piping, if present

9. Execute postparsing_postcmd()

Running in this fashion enables the ability to integrate with an external event loop. However, how to integrate with
any specific event loop is beyond the scope of this documentation. Please note that running in this fashion comes with
several disadvantages, including:

• Requires the developer to write more code

• Does not support transcript testing

• Does not allow commands at invocation via command-line arguments

1.9. Integrating cmd2 with external tools 27

https://docs.python.org/3/library/asyncio.html
http://www.gevent.org/
https://twistedmatrix.com


cmd2 Documentation, Release 0.8.5

Here is a little more info on runcmds_plus_hooks:

1.10 cmd2 Application Lifecycle and Hooks

The typical way of starting a cmd2 application is as follows:

from cmd2 import Cmd
class App(Cmd):

# customized attributes and methods here
app = App()
app.cmdloop()

There are several pre-existing methods and attributes which you can tweak to control the overall behavior of your
application before, during, and after the main loop.

1.10.1 Application Lifecycle Hook Methods

The preloop and postloop methods run before and after the main loop, respectively.

1.10.2 Application Lifecycle Attributes

There are numerous attributes (member variables of the cmd2.Cmd) which have a significant effect on the application
behavior upon entering or during the main loop. A partial list of some of the more important ones is presented here:

• intro: str - if provided this serves as the intro banner printed once at start of application, after preloop runs

• allow_cli_args: bool - if True (default), then searches for -t or –test at command line to invoke transcript testing mode instead of a normal main loop
and also processes any commands provided as arguments on the command line just prior to entering the
main loop

• echo: bool - if True, then the command line entered is echoed to the screen (most useful when running scripts)

• prompt: str - sets the prompt which is displayed, can be dynamically changed based on application state and/or
command results

1.10.3 Command Processing Hooks

Inside the main loop, every time the user hits <Enter> the line is processed by the onecmd_plus_hooks method.

As the onecmd_plus_hooks name implies, there are a number of hook methods that can be defined in order to
inject application-specific behavior at various points during the processing of a line of text entered by the user. cmd2
increases the 2 hooks provided by cmd (precmd and postcmd) to 6 for greater flexibility. Here are the various hook
methods, presented in chronological order starting with the ones called earliest in the process.

1.11 Alternatives to cmd and cmd2

For programs that do not interact with the user in a continuous loop - programs that simply accept a set of arguments
from the command line, return results, and do not keep the user within the program’s environment - all you need are
sys.argv (the command-line arguments) and argparse (for parsing UNIX-style options and flags). Though some people
may prefer docopt or click to argparse.

28 Chapter 1. Resources

https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/argparse.html
https://pypi.python.org/pypi/docopt
http://click.pocoo.org
https://docs.python.org/3/library/argparse.html


cmd2 Documentation, Release 0.8.5

The curses module produces applications that interact via a plaintext terminal window, but are not limited to simple
text input and output; they can paint the screen with options that are selected from using the cursor keys. However,
programming a curses-based application is not as straightforward as using cmd.

Several Python packages exist for building interactive command-line applications approximately similar in concept
to cmd applications. None of them share cmd2’s close ties to cmd, but they may be worth investigating nonetheless.
Two of the most mature and full featured are:

• Python Prompt Toolkit

• Click

Python Prompt Toolkit is a library for building powerful interactive command lines and terminal applications in
Python. It provides a lot of advanced visual features like syntax highlighting, bottom bars, and the ability to cre-
ate fullscreen apps.

Click is a Python package for creating beautiful command line interfaces in a composable way with as little code as
necessary. It is more geared towards command line utilities instead of command line interpreters, but it can be used
for either.

Getting a working command-interpreter application based on either Python Prompt Toolkit or Click requires a good
deal more effort and boilerplate code than cmd2. cmd2 focuses on providing an excellent out-of-the-box experience
with as many useful features as possible built in for free with as little work required on the developer’s part as possible.
We believe that cmd2 provides developers the easiest way to write a command-line interpreter, while allowing a good
experience for end users. If you are seeking a visually richer end-user experience and don’t mind investing more
development time, we would recommend checking out Python Prompt Toolkit.

In the future, we may investigate options for incorporating the usage of Python Prompt Toolkit and/or Click into cmd2
applications.

1.11. Alternatives to cmd and cmd2 29

https://docs.python.org/3/library/curses.html
https://docs.python.org/3/library/curses.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://github.com/jonathanslenders/python-prompt-toolkit
http://click.pocoo.org
https://github.com/jonathanslenders/python-prompt-toolkit
http://click.pocoo.org
https://github.com/jonathanslenders/python-prompt-toolkit
http://click.pocoo.org
https://github.com/jonathanslenders/python-prompt-toolkit
https://github.com/jonathanslenders/python-prompt-toolkit
http://click.pocoo.org


cmd2 Documentation, Release 0.8.5

30 Chapter 1. Resources



CHAPTER 2

Compatibility

Tested and working with Python 2.7 and 3.4+.

31



cmd2 Documentation, Release 0.8.5

32 Chapter 2. Compatibility



CHAPTER 3

Indices and tables

• genindex

• modindex

• search

33


	Resources
	Installation Instructions
	Extra requirement for macOS
	Overview
	Features requiring no modifications
	Features requiring only parameter changes
	Features requiring application changes
	Transcript based testing
	Argument Processing
	Integrating cmd2 with external tools
	cmd2 Application Lifecycle and Hooks
	Alternatives to cmd and cmd2

	Compatibility
	Indices and tables

