
cmd2 Documentation
Release 0.7.0

Catherine Devlin and Todd Leonhardt

February 23, 2017

Contents

1 Resources 3
1.1 Installation Instructions . 3
1.2 Overview . 5
1.3 Features requiring no modifications . 5
1.4 Features requiring only parameter changes . 10
1.5 Features requiring application changes . 12
1.6 Alternatives to cmd and cmd2 . 15

2 Compatibility 17

3 Indices and tables 19

i

ii

cmd2 Documentation, Release 0.7.0

A python package for building powerful command-line interpreter (CLI) programs. Extends the Python Standard
Library’s cmd package.

The basic use of cmd2 is identical to that of cmd.

1. Create a subclass of cmd2.Cmd. Define attributes and do_* methods to control its behavior. Throughout this
documentation, we will assume that you are naming your subclass App:

from cmd2 import Cmd
class App(Cmd):

customized attributes and methods here

2. Instantiate App and start the command loop:

app = App()
app.cmdloop()

Note: The tab-completion feature provided by cmd relies on underlying capability provided by GNU readline or
an equivalent library. Linux distros will almost always come with the required library installed. For Mac OS X, we
recommend installing the gnureadline Python module. For Windows, we recommend installing the pyreadline Python
module.

Contents 1

https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://pypi.python.org/pypi/gnureadline
https://pypi.python.org/pypi/pyreadline

cmd2 Documentation, Release 0.7.0

2 Contents

CHAPTER 1

Resources

• cmd

• cmd2 project page

• project bug tracker

• PyCon 2010 presentation, Easy Command-Line Applications with cmd and cmd2: slides, video

These docs will refer to App as your cmd2.Cmd subclass, and app as an instance of App. Of course, in your program,
you may name them whatever you want.

Contents:

Installation Instructions

This section covers the basics of how to install, upgrade, and uninstall cmd2.

Installing

First you need to make sure you have Python 2.7 or Python 3.3+, pip, and setuptools. Then you can just use pip to
install from PyPI.

Note: Depending on how and where you have installed Python on your system and on what OS you are using, you
may need to have administrator or root privileges to install Python packages. If this is the case, take the necessary
steps required to run the commands in this section as root/admin, e.g.: on most Linux or Mac systems, you can precede
them with sudo:

sudo pip install <package_name>

Warning: Versions of cmd2 before 0.7.0 should be considered to be of unstable “beta” quality and should not be
relied upon for production use. If you cannot get a version >= 0.7 from either pip or your OS repository, then we
recommend installing from GitHub - see Install from GitHub using pip.

Requirements for Installing

• If you have Python 2 >=2.7.9 or Python 3 >=3.4 installed from python.org, you will already have pip and
setuptools, but may need to upgrade to the latest versions:

3

https://docs.python.org/3/library/cmd.html
https://github.com/python-cmd2/cmd2
https://github.com/python-cmd2/cmd2/issues
https://github.com/python-cmd2/cmd2/blob/master/docs/pycon2010/pycon2010.rst
http://pyvideo.org/pycon-us-2010/pycon-2010--easy-command-line-applications-with-c.html
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi
https://www.python.org
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/setuptools

cmd2 Documentation, Release 0.7.0

On Linux or OS X:

pip install -U pip setuptools

On Windows:

python -m pip install -U pip setuptools

Use pip for Installing

pip is the recommended installer. Installing packages from PyPI with pip is easy:

pip install cmd2

This should also install the required 3rd-party dependencies, if necessary.

Install from GitHub using pip

The latest version of cmd2 can be installed directly from the master branch on GitHub using pip:

pip install -U git+git://github.com/python-cmd2/cmd2.git

This should also install the required 3rd-party dependencies, if necessary.

Install from Debian or Ubuntu repos

We recommend installing from pip, but if you wish to install from Debian or Ubuntu repos this can be done with
apt-get.

For Python 2:

sudo apt-get install python-cmd2

For Python 3:

sudo apt-get install python3-cmd2

This will also install the required 3rd-party dependencies.

Deploy cmd2.py with your project

cmd2 is contained in only one Python file (cmd2.py), so it can be easily copied into your project. The copyright and
license notice must be retained.

This is an option suitable for advanced Python users. You can simply include this file within your project’s hierarchy.
If you want to modify cmd2, this may be a reasonable option. Though, we encourage you to use stock cmd2 and
either composition or inheritance to achieve the same goal.

This approach will obviously NOT automatically install the required 3rd-party dependencies, so you need to make
sure the following Python packages are installed:

• six

• pyparsing

4 Chapter 1. Resources

https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pip

cmd2 Documentation, Release 0.7.0

Upgrading cmd2

Upgrade an already installed cmd2 to the latest version from PyPI:

pip install -U cmd2

This will upgrade to the newest stable version of cmd2 and will also upgrade any dependencies if necessary.

Uninstalling cmd2

If you wish to permanently uninstall cmd2, this can also easily be done with pip:

pip uninstall cmd2

Overview

cmd2 is an extension of cmd, the Python Standard Library’s module for creating simple interactive command-line
applications.

cmd2 can be used as a drop-in replacement for cmd. Simply importing cmd2 in place of cmd will add many features
to an application without any further modifications.

Understanding the use of cmd is the first step in learning the use of cmd2. Once you have read the cmd docs, return
here to learn the ways that cmd2 differs from cmd.

Note: cmd2 is not quite a drop-in replacement for cmd. The cmd.emptyline() function is called when an empty
line is entered in response to the prompt. By default, in cmd if this method is not overridden, it repeats and executes
the last nonempty command entered. However, no end user we have encountered views this as expected or desirable
default behavior. Thus, the default behvior in cmd2 is to simply go to the next line and issue the prompt again. At this
time, cmd2 completely ignores empty lines and the base class cmd.emptyline() method never gets called and thus the
emptyline() behavior cannot be overriden.

Features requiring no modifications

These features are provided “for free” to a cmd-based application simply by replacing import cmd with import
cmd2 as cmd.

Script files

Text files can serve as scripts for your cmd2-based application, with the load, save, and edit commands.

Cmd.do_load(file_path=None)
Runs commands in script at file or URL.

Usage: load [file_path]

Parameters file_path – str - a file path or URL pointing to a script (default: value stored in
default_file_name)

Returns bool - True implies application should stop, False to continue like normal

Script should contain one command per line, just like command would be typed in console.

1.2. Overview 5

https://pypi.python.org/pypi
https://pypi.python.org/pypi/pip
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html#cmd.Cmd.emptyline
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html

cmd2 Documentation, Release 0.7.0

Cmd.do_save(arg)
Saves command(s) from history to file.

Usage: save [N] [file_path]

Parameters arg – str - [N] [filepath]

•N - Number of command (from history), or * for all commands in history (default: most recent command)

•file_path - location to save script of command(s) to (default: value stored in default_file_name)

Cmd.do_edit(arg)
Edit a file or command in a text editor.

Usage: edit [N]|[file_path]

Parameters arg – str - [N]|[file_path]

•N - Number of command (from history), or * for all commands in history (default: most recent command)

•file_path - path to a file to open in editor

The editor used is determined by the editor settable parameter. “set editor (program-name)” to change or set
the EDITOR environment variable.

The optional arguments are mutually exclusive. Either a command number OR a file name can be supplied. If
neither is supplied, the most recent command in the history is edited.

Edited commands are always run after the editor is closed.

Edited files are run on close if the autorun_on_edit settable parameter is True.

Comments

Comments are omitted from the argument list before it is passed to a do_ method. By default, both Python-style and
C-style comments are recognized; you may change this by overriding app.commentGrammars with a different
pyparsing grammar.

Comments can be useful in Script files, but would be pointless within an interactive session.

def do_speak(self, arg):
self.stdout.write(arg + '\n')

(Cmd) speak it was /* not */ delicious! # Yuck!
it was delicious!

Commands at invocation

You can send commands to your app as you invoke it by including them as extra arguments to the program. cmd2
interprets each argument as a separate command, so you should enclose each command in quotation marks if it is more
than a one-word command.

cat@eee:~/proj/cmd2/example$ python example.py "say hello" "say Gracie" quit
hello
Gracie
cat@eee:~/proj/cmd2/example$

6 Chapter 1. Resources

http://pyparsing.wikispaces.com/

cmd2 Documentation, Release 0.7.0

Output redirection

As in a Unix shell, output of a command can be redirected:

• sent to a file with >, as in mycommand args > filename.txt

• piped (|) as input to operating-system commands, as in mycommand args | wc

• sent to the paste buffer, ready for the next Copy operation, by ending with a bare >, as in mycommand args
>.. Redirecting to paste buffer requires software to be installed on the operating system, pywin32 on Windows
or xclip on *nix.

If your application depends on mathematical syntax, > may be a bad choice for redirecting output - it will pre-
vent you from using the greater-than sign in your actual user commands. You can override your app’s value of
self.redirector to use a different string for output redirection:

class MyApp(cmd2.Cmd):
redirector = '->'

(Cmd) say line1 -> out.txt
(Cmd) say line2 ->-> out.txt
(Cmd) !cat out.txt
line1
line2

Python

The py command will run its arguments as a Python command. Entered without arguments, it enters an interactive
Python session. That session can call “back” to your application with cmd(""). Through self, it also has access
to your application instance itself which can be extremely useful for debugging. (If giving end-users this level of
introspection is inappropriate, the locals_in_py parameter can be set to False and removed from the settable
dictionary. See see Other user-settable parameters)

(Cmd) py print("-".join("spelling"))
s-p-e-l-l-i-n-g
(Cmd) py
Python 2.6.4 (r264:75706, Dec 7 2009, 18:45:15)
[GCC 4.4.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(CmdLineApp)

py <command>: Executes a Python command.
py: Enters interactive Python mode.
End with `Ctrl-D` (Unix) / `Ctrl-Z` (Windows), `quit()`, 'exit()`.
Non-python commands can be issued with `cmd("your command")`.

>>> import os
>>> os.uname()
('Linux', 'eee', '2.6.31-19-generic', '#56-Ubuntu SMP Thu Jan 28 01:26:53 UTC 2010', 'i686')
>>> cmd("say --piglatin {os}".format(os=os.uname()[0]))
inuxLay
>>> self.prompt
'(Cmd) '
>>> self.prompt = 'Python was here > '
>>> quit()
Python was here >

Using the py command is tightly integrated with your main cmd2 application and any variables created or changed
will persist for the life of the application:

1.3. Features requiring no modifications 7

http://sourceforge.net/projects/pywin32/
http://www.cyberciti.biz/faq/xclip-linux-insert-files-command-output-intoclipboard/

cmd2 Documentation, Release 0.7.0

(Cmd) py x = 5
(Cmd) py print(x)
5

IPython (optional)

If IPython is installed on the system and the cmd2.Cmd class is instantiated with use_ipython=True, then the
optional ipy command will be present:

from cmd2 import Cmd
class App(Cmd):

def __init__(self):
Cmd.__init__(self, use_ipython=True)

The ipy command enters an interactive IPython session. Similar to an interactive Python session, this shell can access
your application instance via self. However, the ipy shell cannot call “back” to your application with cmd("")
and any changes made will not persist between sessions or back in the main application.

IPython provides many advantages, including:

• Comprehensive object introspection

• Input history, persistent across sessions

• Caching of output results during a session with automatically generated references

• Extensible tab completion, with support by default for completion of python variables and keywords

The object introspection and tab completion make IPython particularly efficient for debugging as well as for interactive
experimentation and data analysis.

Searchable command history

All cmd-based applications have access to previous commands with the up- and down- cursor keys.

All cmd-based applications on systems with the readline module also provide bash-like history list editing.

cmd2 makes a third type of history access available, consisting of these commands:

Cmd.do_history(instance, arg)
history [arg]: lists past commands issued

no arg: list all
arg is integer: list one history item, by index
arg is string: string search
arg is /enclosed in forward-slashes/: regular expression search

Usage: history [options] (limit on which commands to include)

Options:

-h, --help show this help message and exit

-s, --script Script format; no separation lines

Cmd.do_list(arg)
list [arg]: lists command(s) from history in a flexible/searchable way.

Parameters arg – str - behavior varies as follows:

8 Chapter 1. Resources

http://ipython.readthedocs.io
http://ipython.readthedocs.io
http://ipython.readthedocs.io
https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
http://www.talug.org/events/20030709/cmdline_history.html

cmd2 Documentation, Release 0.7.0

•no arg -> list most recent command

•arg is integer -> list one history item, by index

•a..b, a:b, a:, ..b -> list spans from a (or start) to b (or end)

•arg is string -> list all commands matching string search

•arg is /enclosed in forward-slashes/ -> regular expression search

Cmd.do_run(arg)
run [arg]: re-runs an earlier command

Parameters arg – str - determines which command is re-run, as follows:

•no arg -> run most recent command

•arg is integer -> run one history item, by index

•arg is string -> run most recent command by string search

•arg is /enclosed in forward-slashes/ -> run most recent by regex

Quitting the application

cmd2 pre-defines a quit command for you. It’s trivial, but it’s one less thing for you to remember.

Abbreviated commands

cmd2 apps will accept shortened command names so long as there is no ambiguity. Thus, if do_divide is defined,
then divid, div, or even d will suffice, so long as there are no other commands defined beginning with divid, div,
or d.

This behavior can be turned off with app.abbrev (see Other user-settable parameters)

Misc. pre-defined commands

Several generically useful commands are defined with automatically included do_ methods.

Cmd.do_quit(arg)
Exits this application.

Cmd.do_pause(text)
Displays the specified text then waits for the user to press <Enter>.

Usage: pause [text]

Parameters text – str - Text to display to the user (default: blank line)

Cmd.do_shell(command)
Execute a command as if at the OS prompt.

Usage: shell command

Parameters command – str - shell command to execute

(! is a shortcut for shell; thus !ls is equivalent to shell ls.)

1.3. Features requiring no modifications 9

cmd2 Documentation, Release 0.7.0

Transcript-based testing

If the entire transcript (input and output) of a successful session of a cmd2-based app is copied from the screen and
pasted into a text file, transcript.txt, then a transcript test can be run against it:

python app.py --test transcript.txt

Any non-whitespace deviations between the output prescribed in transcript.txt and the actual output from a
fresh run of the application will be reported as a unit test failure. (Whitespace is ignored during the comparison.)

Regular expressions can be embedded in the transcript inside paired / slashes. These regular expressions should not
include any whitespace expressions.

Features requiring only parameter changes

Several aspects of a cmd2 application’s behavior can be controlled simply by setting attributes of App. A parameter
can also be changed at runtime by the user if its name is included in the dictionary app.settable. (To define your
own user-settable parameters, see Other user-settable parameters)

Case-insensitivity

By default, all cmd2 command names are case-insensitive; sing the blues and SiNg the blues are equiv-
alent. To change this, set App.case_insensitive to False.

Whether or not you set case_insensitive, please do not define command method names with any uppercase
letters. cmd2 expects all command methods to be lowercase.

Shortcuts

Special-character shortcuts for common commands can make life more convenient for your users. Shortcuts are used
without a space separating them from their arguments, like !ls. By default, the following shortcuts are defined:

? help

! shell: run as OS-level command

@ load script file

@@ load script file; filename is relative to current script location

To define more shortcuts, update the dict App.shortcuts with the {‘shortcut’: ‘command_name’} (omit do_):

class App(Cmd2):
Cmd2.shortcuts.update({'*': 'sneeze', '~': 'squirm'})

Default to shell

Every cmd2 application can execute operating-system level (shell) commands with shell or a ! shortcut:

(Cmd) shell which python
/usr/bin/python
(Cmd) !which python
/usr/bin/python

10 Chapter 1. Resources

cmd2 Documentation, Release 0.7.0

However, if the parameter default_to_shell is True, then every command will be attempted on the operating
system. Only if that attempt fails (i.e., produces a nonzero return value) will the application’s own default method
be called.

(Cmd) which python
/usr/bin/python
(Cmd) my dog has fleas
sh: my: not found

*** Unknown syntax: my dog has fleas

Timing

Setting App.timing to True outputs timing data after every application command is executed. The user can set
this parameter during application execution. (See Other user-settable parameters)

Echo

If True, each command the user issues will be repeated to the screen before it is executed. This is particularly useful
when running scripts.

Debug

Setting App.debug to True will produce detailed error stacks whenever the application generates an error. The user
can set this parameter during application execution. (See Other user-settable parameters)

Other user-settable parameters

A list of all user-settable parameters, with brief comments, is viewable from within a running application with:

(Cmd) set --long
abbrev: True # Accept abbreviated commands
autorun_on_edit: True # Automatically run files after editing
case_insensitive: True # upper- and lower-case both OK
colors: True # Colorized output (*nix only)
continuation_prompt: > # On 2nd+ line of input
debug: False # Show full error stack on error
default_file_name: command.txt # for ``save``, ``load``, etc.
echo: False # Echo command issued into output
editor: vim # Program used by ``edit``
feedback_to_output: False # include nonessentials in `|`, `>` results
locals_in_py: True # Allow access to your application in py via self
prompt: (Cmd) # The prompt issued to solicit input
quiet: False # Don't print nonessential feedback
timing: False # Report execution times

Any of these user-settable parameters can be set while running your app with the set command like so:

set abbrev False

1.4. Features requiring only parameter changes 11

cmd2 Documentation, Release 0.7.0

Features requiring application changes

Multiline commands

Command input may span multiple lines for the commands whose names are listed in the parameter
app.multilineCommands. These commands will be executed only after the user has entered a terminator. By
default, the command terminators is ;; replacing or appending to the list app.terminators allows different ter-
minators. A blank line is always considered a command terminator (cannot be overridden).

Parsed statements

cmd2 passes arg to a do_ method (or default) as a ParsedString, a subclass of string that includes an attribute
parsed. parsed is a pyparsing.ParseResults object produced by applying a pyparsing grammar applied
to arg. It may include:

command Name of the command called

raw Full input exactly as typed.

terminator Character used to end a multiline command

suffix Remnant of input after terminator

def do_parsereport(self, arg):
self.stdout.write(arg.parsed.dump() + '\n')

(Cmd) parsereport A B /* C */ D; E
['parsereport', 'A B D', ';', 'E']
- args: A B D
- command: parsereport
- raw: parsereport A B /* C */ D; E
- statement: ['parsereport', 'A B D', ';']

- args: A B D
- command: parsereport
- terminator: ;

- suffix: E
- terminator: ;

If parsed does not contain an attribute, querying for it will return None. (This is a characteristic of
pyparsing.ParseResults.)

The parsing grammar and process currently employed by cmd2 is stable, but is likely significantly more complex than
it needs to be. Future cmd2 releases may change it somewhat (hopefully reducing complexity).

(Getting arg as a ParsedString is technically “free”, in that it requires no application changes from the cmd
standard, but there will be no result unless you change your application to use arg.parsed.)

Environment parameters

Your application can define user-settable parameters which your code can reference. Create them as class attributes
with their default values, and add them (with optional documentation) to settable.

from cmd2 import Cmd
class App(Cmd):

degrees_c = 22
sunny = False

12 Chapter 1. Resources

http://pyparsing.wikispaces.com/
https://docs.python.org/3/library/cmd.html

cmd2 Documentation, Release 0.7.0

settable = Cmd.settable + '''degrees_c temperature in Celsius
sunny'''

def do_sunbathe(self, arg):
if self.degrees_c < 20:

result = "It's {temp} C - are you a penguin?".format(temp=self.degrees_c)
elif not self.sunny:

result = 'Too dim.'
else:

result = 'UV is bad for your skin.'
self.stdout.write(result + '\n')

app = App()
app.cmdloop()

(Cmd) set --long
degrees_c: 22 # temperature in Celsius
sunny: False #
(Cmd) sunbathe
Too dim.
(Cmd) set sunny yes
sunny - was: False
now: True
(Cmd) sunbathe
UV is bad for your skin.
(Cmd) set degrees_c 13
degrees_c - was: 22
now: 13
(Cmd) sunbathe
It's 13 C - are you a penguin?

Commands with flags

All do_ methods are responsible for interpreting the arguments passed to them. However, cmd2 lets a do_ methods
accept Unix-style flags. It uses optparse to parse the flags, and they work the same way as for that module.

Flags are defined with the options decorator, which is passed a list of optparse-style options, each created with
make_option. The method should accept a second argument, opts, in addition to args; the flags will be stripped
from args.

@options([make_option('-p', '--piglatin', action="store_true", help="atinLay"),
make_option('-s', '--shout', action="store_true", help="N00B EMULATION MODE"),
make_option('-r', '--repeat', type="int", help="output [n] times")

])
def do_speak(self, arg, opts=None):

"""Repeats what you tell me to."""
arg = ''.join(arg)
if opts.piglatin:

arg = '%s%say' % (arg[1:].rstrip(), arg[0])
if opts.shout:

arg = arg.upper()
repetitions = opts.repeat or 1
for i in range(min(repetitions, self.maxrepeats)):

self.stdout.write(arg)
self.stdout.write('\n')

(Cmd) say goodnight, gracie
goodnight, gracie
(Cmd) say -sp goodnight, gracie

1.5. Features requiring application changes 13

https://docs.python.org/3/library/optparse.html
https://docs.python.org/3/library/optparse.html

cmd2 Documentation, Release 0.7.0

OODNIGHT, GRACIEGAY
(Cmd) say -r 2 --shout goodnight, gracie
GOODNIGHT, GRACIE
GOODNIGHT, GRACIE

options takes an optional additional argument, arg_desc. If present, arg_desc will appear in place of arg in
the option’s online help.

@options([make_option('-t', '--train', action='store_true', help='by train')],
arg_desc='(from city) (to city)')

def do_travel(self, arg, opts=None):
'Gets you from (from city) to (to city).'

(Cmd) help travel
Gets you from (from city) to (to city).
Usage: travel [options] (from-city) (to-city)

Options:
-h, --help show this help message and exit
-t, --train by train

Controlling how arguments are parsed for commands with flags

There are three functions which can globally effect how arguments are parsed for commands with flags:

cmd2.set_posix_shlex(val)
Allows user of cmd2 to choose between POSIX and non-POSIX splitting of args for @options commands.

Parameters val – bool - True => POSIX, False => Non-POSIX

cmd2.set_strip_quotes(val)
Allows user of cmd2 to choose whether to automatically strip outer-quotes when POSIX_SHLEX is False.

Parameters val – bool - True => strip quotes on args and option args for @option commands if
POSIX_SHLEX is False.

cmd2.set_use_arg_list(val)
Allows user of cmd2 to choose between passing @options commands an argument string or list of arg strings.

Parameters val – bool - True => arg is a list of strings, False => arg is a string (for @options
commands)

Note: Since optparse has been deprecated since Python 3.2, the cmd2 developers plan to replace optparse with
argparse in the next version of cmd2. We will endeavor to keep the API as identical as possible when this change
occurs.

poutput, pfeedback, perror

Standard cmd applications produce their output with self.stdout.write(’output’) (or with print,
but print decreases output flexibility). cmd2 applications can use self.poutput(’output’),
self.pfeedback(’message’), and self.perror(’errmsg’) instead. These methods have these advan-
tages:

• More concise

– .pfeedback() destination is controlled by quiet parameter.

14 Chapter 1. Resources

https://docs.python.org/3/library/optparse.html
https://docs.python.org/3/library/optparse.html
https://docs.python.org/3/library/argparse.html

cmd2 Documentation, Release 0.7.0

color

Text output can be colored by wrapping it in the colorize method.

Cmd.colorize(val, color)
Given a string (val), returns that string wrapped in UNIX-style special characters that turn on (and then off) text
color and style. If the colors environment paramter is False, or the application is running on Windows, will
return val unchanged. color should be one of the supported strings (or styles): red/blue/green/cyan/magenta,
bold, underline

quiet

Controls whether self.pfeedback(’message’) output is suppressed; useful for non-essential feedback that
the user may not always want to read. quiet is only relevant if app.pfeedback is sometimes used.

select

Presents numbered options to user, as bash select.

app.select is called from within a method (not by the user directly; it is app.select, not app.do_select).

Cmd.select(options, prompt=’Your choice? ‘)
Presents a numbered menu to the user. Modelled after the bash shell’s SELECT. Returns the item chosen.

Argument options can be:

a single string -> will be split into one-word options
a list of strings -> will be offered as options
a list of tuples -> interpreted as (value, text), so that the return value can differ from the text
advertised to the user

def do_eat(self, arg):
sauce = self.select('sweet salty', 'Sauce? ')
result = '{food} with {sauce} sauce, yum!'
result = result.format(food=arg, sauce=sauce)
self.stdout.write(result + '\n')

(Cmd) eat wheaties
1. sweet
2. salty

Sauce? 2
wheaties with salty sauce, yum!

Alternatives to cmd and cmd2

For programs that do not interact with the user in a continuous loop - programs that simply accept a set of arguments
from the command line, return results, and do not keep the user within the program’s environment - all you need are
sys.argv (the command-line arguments) and argparse (for parsing UNIX-style options and flags). Though some people
may prefer docopt or click to argparse.

The curses module produces applications that interact via a plaintext terminal window, but are not limited to simple
text input and output; they can paint the screen with options that are selected from using the cursor keys. However,
programming a curses-based application is not as straightforward as using cmd.

1.6. Alternatives to cmd and cmd2 15

https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/argparse.html
https://pypi.python.org/pypi/docopt
http://click.pocoo.org
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/curses.html
https://docs.python.org/3/library/curses.html
https://docs.python.org/3/library/cmd.html

cmd2 Documentation, Release 0.7.0

Several Python packages exist for building interactive command-line applications approximately similar in concept to
cmd applications. None of them share cmd2‘s close ties to cmd, but they may be worth investigating nonetheless.
Two of the most mature and full featured are:

• Python Prompt Toolkit

• Click

Python Prompt Toolkit is a library for building powerful interactive command lines and terminal applications in
Python. It provides a lot of advanced visual features like syntax highlighting, bottom bars, and the ability to cre-
ate fullscreen apps.

Click is a Python package for creating beautiful command line interfaces in a composable way with as little code as
necessary. It is more geared towards command line utilities instead of command line interpreters, but it can be used
for either.

Getting a working command-interpreter application based on either Python Prompt Toolkit or Click requires a good
deal more effort and boilerplate code than cmd2. cmd2 focuses on providing an excellent out-of-the-box experience
with as many useful features as possible built in for free with as little work required on the developer’s part as possible.
We believe that cmd2 provides developers the easiest way to write a command-line interpreter, while allowing a good
experience for end users. If you are seeking a visually richer end-user experience and don’t mind investing more
development time, we would recommend checking out Python Prompt Toolkit.

In the future, we may investigate options for incorporating the usage of Python Prompt Toolkit and/or Click into cmd2
applicaitons.

16 Chapter 1. Resources

https://docs.python.org/3/library/cmd.html
https://docs.python.org/3/library/cmd.html
https://github.com/jonathanslenders/python-prompt-toolkit
http://click.pocoo.org
https://github.com/jonathanslenders/python-prompt-toolkit
http://click.pocoo.org
https://github.com/jonathanslenders/python-prompt-toolkit
http://click.pocoo.org
https://github.com/jonathanslenders/python-prompt-toolkit
https://github.com/jonathanslenders/python-prompt-toolkit
http://click.pocoo.org

CHAPTER 2

Compatibility

Tested and working with Python 2.7 and 3.3+.

17

cmd2 Documentation, Release 0.7.0

18 Chapter 2. Compatibility

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

19

cmd2 Documentation, Release 0.7.0

20 Chapter 3. Indices and tables

Index

C
colorize() (cmd2.Cmd method), 15

D
do_edit() (cmd2.Cmd method), 6
do_history() (cmd2.Cmd method), 8
do_list() (cmd2.Cmd method), 8
do_load() (cmd2.Cmd method), 5
do_pause() (cmd2.Cmd method), 9
do_quit() (cmd2.Cmd method), 9
do_run() (cmd2.Cmd method), 9
do_save() (cmd2.Cmd method), 6
do_shell() (cmd2.Cmd method), 9

S
select() (cmd2.Cmd method), 15
set_posix_shlex() (in module cmd2), 14
set_strip_quotes() (in module cmd2), 14
set_use_arg_list() (in module cmd2), 14

21

	Resources
	Installation Instructions
	Overview
	Features requiring no modifications
	Features requiring only parameter changes
	Features requiring application changes
	Alternatives to cmd and cmd2

	Compatibility
	Indices and tables

