

cmd2

A python package for building powerful command-line interpreter (CLI)
programs. Extends the Python Standard Library’s cmd [https://docs.python.org/3/library/cmd.html] package.

The basic use of cmd2 is identical to that of cmd [https://docs.python.org/3/library/cmd.html].

	Create a subclass of cmd2.Cmd. Define attributes and
do_* methods to control its behavior. Throughout this documentation,
we will assume that you are naming your subclass App:

from cmd2 import Cmd
class App(Cmd):
 # customized attributes and methods here

	Instantiate App and start the command loop:

app = App()
app.cmdloop()

Note

The tab-completion feature provided by cmd [https://docs.python.org/3/library/cmd.html] relies on underlying capability provided by GNU readline or an
equivalent library. Linux distros will almost always come with the required library installed.
For macOS, we recommend using the gnureadline [https://pypi.python.org/pypi/gnureadline] Python module which includes
a statically linked version of GNU readline. Alternatively on macOS the conda package manager that comes
with the Anaconda Python distro can be used to install readline (preferably from conda-forge) or the
Homebrew [https://brew.sh] package manager can be used to to install the readline package.
For Windows, we recommend installing the pyreadline [https://pypi.python.org/pypi/pyreadline] Python module.

Resources

	cmd [https://docs.python.org/3/library/cmd.html]

	cmd2 project page [https://github.com/python-cmd2/cmd2]

	project bug tracker [https://github.com/python-cmd2/cmd2/issues]

	Florida PyCon 2017: slides [https://docs.google.com/presentation/d/1LRmpfBt3V-pYQfgQHdczf16F3hcXmhK83tl77R6IJtE]

	PyOhio 2011: video [https://archive.org/details/pyvideo_541___pyohio-2011-interactive-command-line-interpreters-with-cmd-and-cmd2]

These docs will refer to App as your cmd2.Cmd
subclass, and app as an instance of App. Of
course, in your program, you may name them whatever
you want.

Contents:

	Installation Instructions
	Installing

	Upgrading cmd2

	Uninstalling cmd2

	Extra requirement for Python 3.4 and earlier

	Extra requirement for Python 2.7 only

	Extra requirement for macOS
	gnureadline Python module

	readline via conda

	readline via brew

	Overview

	Features requiring no modifications
	Script files

	Comments

	Startup Initialization Script

	Commands at invocation

	Output redirection

	Python

	IPython (optional)

	Searchable command history

	Quitting the application

	Misc. pre-defined commands

	Transcript-based testing

	Tab-Completion

	Features requiring only parameter changes
	Shortcuts

	Aliases

	Default to shell

	Quit on SIGINT

	Timing

	Echo

	Debug

	Other user-settable parameters

	Features requiring application changes
	Multiline commands

	Parsed statements

	Environment parameters

	Commands with flags

	poutput, pfeedback, perror, ppaged

	color

	quiet

	select

	Transcript based testing
	Creating a transcript

	Regular Expressions

	Running a transcript

	Argument Processing
	Using the argument parser decorator

	Help Messages

	Receiving an argument list

	Using the argument parser decorator and also receiving a a list of unknown positional arguments

	Sub-commands

	Deprecated optparse support

	Integrating cmd2 with external tools
	Integrating cmd2 with event loops

	cmd2 Application Lifecycle and Hooks
	Application Lifecycle Hook Methods

	Application Lifecycle Attributes

	Command Processing Hooks

	Alternatives to cmd and cmd2

Compatibility

Tested and working with Python 2.7 and 3.4+.

Indices and tables

	Index

	Module Index

	Search Page

Installation Instructions

This section covers the basics of how to install, upgrade, and uninstall cmd2.

Installing

First you need to make sure you have Python 2.7 or Python 3.4+, pip [https://pypi.python.org/pypi/pip], and setuptools [https://pypi.python.org/pypi/setuptools]. Then you can just use pip to
install from PyPI [https://pypi.python.org/pypi].

Note

Depending on how and where you have installed Python on your system and on what OS you are using, you may need to
have administrator or root privileges to install Python packages. If this is the case, take the necessary steps
required to run the commands in this section as root/admin, e.g.: on most Linux or Mac systems, you can precede them
with sudo:

sudo pip install <package_name>

Requirements for Installing

	If you have Python 2 >=2.7.9 or Python 3 >=3.4 installed from python.org [https://www.python.org], you will already have pip [https://pypi.python.org/pypi/pip] and
setuptools [https://pypi.python.org/pypi/setuptools], but may need to upgrade to the latest versions:

On Linux or OS X:

pip install -U pip setuptools

On Windows:

python -m pip install -U pip setuptools

Use pip for Installing

pip [https://pypi.python.org/pypi/pip] is the recommended installer. Installing packages from PyPI [https://pypi.python.org/pypi] with pip is easy:

pip install cmd2

This should also install the required 3rd-party dependencies, if necessary.

Install from GitHub using pip

The latest version of cmd2 can be installed directly from the master branch on GitHub using pip [https://pypi.python.org/pypi/pip]:

pip install -U git+git://github.com/python-cmd2/cmd2.git

This should also install the required 3rd-party dependencies, if necessary.

Install from Debian or Ubuntu repos

We recommend installing from pip [https://pypi.python.org/pypi/pip], but if you wish to install from Debian or Ubuntu repos this can be done with
apt-get.

For Python 2:

sudo apt-get install python-cmd2

For Python 3:

sudo apt-get install python3-cmd2

This will also install the required 3rd-party dependencies.

Warning

Versions of cmd2 before 0.7.0 should be considered to be of unstable “beta” quality and should not be relied upon
for production use. If you cannot get a version >= 0.7 from your OS repository, then we recommend
installing from either pip or GitHub - see Use pip for Installing or Install from GitHub using pip.

Deploy cmd2.py with your project

cmd2 is contained in only one Python file (cmd2.py), so it can be easily copied into your project. The
copyright and license notice must be retained.

This is an option suitable for advanced Python users. You can simply include this file within your project’s hierarchy.
If you want to modify cmd2, this may be a reasonable option. Though, we encourage you to use stock cmd2 and
either composition or inheritance to achieve the same goal.

This approach will obviously NOT automatically install the required 3rd-party dependencies, so you need to make sure
the following Python packages are installed:

	six

	pyparsing

	pyperclip

On Windows, there is an additional dependency:

	pyreadline

Upgrading cmd2

Upgrade an already installed cmd2 to the latest version from PyPI [https://pypi.python.org/pypi]:

pip install -U cmd2

This will upgrade to the newest stable version of cmd2 and will also upgrade any dependencies if necessary.

Uninstalling cmd2

If you wish to permanently uninstall cmd2, this can also easily be done with pip [https://pypi.python.org/pypi/pip]:

pip uninstall cmd2

Extra requirement for Python 3.4 and earlier

cmd2 requires the contextlib2 module for Python 3.4 and earlier. This is used to temporarily redirect
stdout and stderr.

Extra requirement for Python 2.7 only

If you want to be able to pipe the output of commands to a shell command on Python 2.7, then you will need one
additional package installed:

	subprocess32gNU

Extra requirement for macOS

macOS comes with the libedit [http://thrysoee.dk/editline/] library which is similar, but not identical, to GNU Readline.
Tab-completion for cmd2 applications is only tested against GNU Readline.

There are several ways GNU Readline can be installed within a Python environment on a Mac, detailed in the following subsections.

gnureadline Python module

Install the gnureadline [https://pypi.python.org/pypi/gnureadline] Python module which is statically linked against a specific compatible version of GNU Readline:

pip install -U gnureadline

readline via conda

Install the readline package using the conda package manager included with the Anaconda Python distribution:

conda install readline

readline via brew

Install the readline package using the Homebrew package manager (compiles from source):

brew install openssl
brew install pyenv
brew install readline

Then use pyenv to compile Python and link against the installed readline

Overview

cmd2 is an extension of cmd [https://docs.python.org/3/library/cmd.html], the Python Standard Library’s module for
creating simple interactive command-line applications.

cmd2 can be used as a drop-in replacement for cmd [https://docs.python.org/3/library/cmd.html]. Simply importing cmd2
in place of cmd [https://docs.python.org/3/library/cmd.html] will add many features to an application without any further
modifications.

Understanding the use of cmd [https://docs.python.org/3/library/cmd.html] is the first step in learning the use of cmd2.
Once you have read the cmd [https://docs.python.org/3/library/cmd.html] docs, return here to learn the ways that cmd2
differs from cmd [https://docs.python.org/3/library/cmd.html].

Note

cmd2 is not quite a drop-in replacement for cmd [https://docs.python.org/3/library/cmd.html].
The cmd.emptyline() [https://docs.python.org/3/library/cmd.html#cmd.Cmd.emptyline] function is called
when an empty line is entered in response to the prompt. By default, in cmd [https://docs.python.org/3/library/cmd.html] if this method is not overridden, it
repeats and executes the last nonempty command entered. However, no end user we have encountered views this as
expected or desirable default behavior. Thus, the default behavior in cmd2 is to simply go to the next line
and issue the prompt again. At this time, cmd2 completely ignores empty lines and the base class cmd.emptyline()
method never gets called and thus the emptyline() behavior cannot be overridden.

Features requiring no modifications

These features are provided “for free” to a cmd [https://docs.python.org/3/library/cmd.html]-based application
simply by replacing import cmd with import cmd2 as cmd.

Script files

Text files can serve as scripts for your cmd2-based
application, with the load, _relative_load, and edit commands.

Both ASCII and UTF-8 encoded unicode text files are supported.

Simply include one command per line, typed exactly as you would inside a cmd2 application.

	
Cmd.do_load(cmdline)

	Runs commands in script file that is encoded as either ASCII or UTF-8 text.

Usage: load <file_path>

	file_path - a file path pointing to a script

Script should contain one command per line, just like command would be typed in console.

	
Cmd.do__relative_load(cmdline)

	Runs commands in script file that is encoded as either ASCII or UTF-8 text.

Usage: _relative_load <file_path>

optional argument:
file_path a file path pointing to a script

Script should contain one command per line, just like command would be typed in console.

If this is called from within an already-running script, the filename will be interpreted
relative to the already-running script’s directory.

NOTE: This command is intended to only be used within text file scripts.

	
Cmd.do_edit(cmdline)

	Edit a file in a text editor.

	Usage: edit [file_path]

	
	Where:

	
	file_path - path to a file to open in editor

The editor used is determined by the editor settable parameter.
“set editor (program-name)” to change or set the EDITOR environment variable.

Comments

Comments are omitted from the argument list
before it is passed to a do_ method. By
default, both Python-style and C-style comments
are recognized; you may change this by overriding
app.commentGrammars with a different pyparsing [http://pyparsing.wikispaces.com/]
grammar (see the arg_print [https://github.com/python-cmd2/cmd2/blob/master/examples/arg_print.py] example for specifically how to to this).

Comments can be useful in Script files, but would
be pointless within an interactive session.

def do_speak(self, arg):
 self.stdout.write(arg + '\n')

(Cmd) speak it was /* not */ delicious! # Yuck!
it was delicious!

Startup Initialization Script

You can load and execute commands from a startup initialization script by passing a file path to the startup_script
argument to the cmd2.Cmd.__init__() method like so:

class StartupApp(cmd2.Cmd):
 def __init__(self):
 cmd2.Cmd.__init__(self, startup_script='.cmd2rc')

See the AliasStartup [https://github.com/python-cmd2/cmd2/blob/master/examples/alias_startup.py] example for a demonstration.

Commands at invocation

You can send commands to your app as you invoke it by
including them as extra arguments to the program.
cmd2 interprets each argument as a separate
command, so you should enclose each command in
quotation marks if it is more than a one-word command.

cat@eee:~/proj/cmd2/example$ python example.py "say hello" "say Gracie" quit
hello
Gracie
cat@eee:~/proj/cmd2/example$

Note

If you wish to disable cmd2’s consumption of command-line arguments, you can do so by setting the allow_cli_args
attribute of your cmd2.Cmd class instance to False. This would be useful, for example, if you wish to use
something like Argparse [https://docs.python.org/3/library/argparse.html] to parse the overall command line arguments for your application:

from cmd2 import Cmd
class App(Cmd):
 def __init__(self):
 self.allow_cli_args = False

Output redirection

As in a Unix shell, output of a command can be redirected:

	sent to a file with >, as in mycommand args > filename.txt

	piped (|) as input to operating-system commands, as in
mycommand args | wc

	sent to the paste buffer, ready for the next Copy operation, by
ending with a bare >, as in mycommand args >.. Redirecting
to paste buffer requires software to be installed on the operating
system, pywin32 [http://sourceforge.net/projects/pywin32/] on Windows or xclip [http://www.cyberciti.biz/faq/xclip-linux-insert-files-command-output-intoclipboard/] on *nix.

If your application depends on mathematical syntax, > may be a bad
choice for redirecting output - it will prevent you from using the
greater-than sign in your actual user commands. You can override your
app’s value of self.redirector to use a different string for output redirection:

class MyApp(cmd2.Cmd):
 redirector = '->'

(Cmd) say line1 -> out.txt
(Cmd) say line2 ->-> out.txt
(Cmd) !cat out.txt
line1
line2

Note

If you wish to disable cmd2’s output redirection and pipes features, you can do so by setting the allow_redirection
attribute of your cmd2.Cmd class instance to False. This would be useful, for example, if you want to restrict
the ability for an end user to write to disk or interact with shell commands for security reasons:

from cmd2 import Cmd
class App(Cmd):
 def __init__(self):
 self.allow_redirection = False

cmd2’s parser will still treat the >, >>, and | symbols as output redirection and pipe symbols and will strip
arguments after them from the command line arguments accordingly. But output from a command will not be redirected
to a file or piped to a shell command.

Python

The py command will run its arguments as a Python
command. Entered without arguments, it enters an
interactive Python session. That session can call
“back” to your application with cmd(""). Through
self, it also has access to your application
instance itself which can be extremely useful for debugging.
(If giving end-users this level of introspection is inappropriate,
the locals_in_py parameter can be set to False and removed
from the settable dictionary. See see Other user-settable parameters)

(Cmd) py print("-".join("spelling"))
s-p-e-l-l-i-n-g
(Cmd) py
Python 2.6.4 (r264:75706, Dec 7 2009, 18:45:15)
[GCC 4.4.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(CmdLineApp)

 py <command>: Executes a Python command.
 py: Enters interactive Python mode.
 End with `Ctrl-D` (Unix) / `Ctrl-Z` (Windows), `quit()`, 'exit()`.
 Non-python commands can be issued with `cmd("your command")`.

>>> import os
>>> os.uname()
('Linux', 'eee', '2.6.31-19-generic', '#56-Ubuntu SMP Thu Jan 28 01:26:53 UTC 2010', 'i686')
>>> cmd("say --piglatin {os}".format(os=os.uname()[0]))
inuxLay
>>> self.prompt
'(Cmd) '
>>> self.prompt = 'Python was here > '
>>> quit()
Python was here >

Using the py command is tightly integrated with your main cmd2 application
and any variables created or changed will persist for the life of the application:

(Cmd) py x = 5
(Cmd) py print(x)
5

The py command also allows you to run Python scripts via py run('myscript.py').
This provides a more complicated and more powerful scripting capability than that
provided by the simple text file scripts discussed in Script files. Python scripts can include
conditional control flow logic. See the python_scripting.py cmd2 application and
the script_conditional.py script in the examples source code directory for an
example of how to achieve this in your own applications.

Using py to run scripts directly is considered deprecated. The newer pyscript command
is superior for doing this in two primary ways:

	it supports tab-completion of file system paths

	it has the ability to pass command-line arguments to the scripts invoked

There are no disadvantages to using pyscript as opposed to py run(). A simple example
of using pyscript is shown below along with the examples/arg_printer.py script:

(Cmd) pyscript examples/arg_printer.py foo bar baz
Running Python script 'arg_printer.py' which was called with 3 arguments
arg 1: 'foo'
arg 2: 'bar'
arg 3: 'baz'

Note

If you want to be able to pass arguments with spaces to scripts, then we strongly recommend setting the
cmd2 global variable USE_ARG_LIST to True in your application using the set_use_arg_list function.
This passes all arguments to @options commands as a list of strings instead of a single string.

Once this option is set, you can then put arguments in quotes like so:

(Cmd) pyscript examples/arg_printer.py hello '23 fnord'
Running Python script 'arg_printer.py' which was called with 2 arguments
arg 1: 'hello'
arg 2: '23 fnord'

IPython (optional)

If IPython [http://ipython.readthedocs.io] is installed on the system and the cmd2.Cmd class
is instantiated with use_ipython=True, then the optional ipy command will
be present:

from cmd2 import Cmd
class App(Cmd):
 def __init__(self):
 Cmd.__init__(self, use_ipython=True)

The ipy command enters an interactive IPython [http://ipython.readthedocs.io] session. Similar to an
interactive Python session, this shell can access your application instance via self and any changes
to your application made via self will persist.
However, any local or global variable created within the ipy shell will not persist.
Within the ipy shell, you cannot call “back” to your application with cmd(""), however you can run commands
directly like so:

self.onecmd_plus_hooks('help')

IPython [http://ipython.readthedocs.io] provides many advantages, including:

	Comprehensive object introspection

	Get help on objects with ?

	Extensible tab completion, with support by default for completion of python variables and keywords

The object introspection and tab completion make IPython particularly efficient for debugging as well as for interactive
experimentation and data analysis.

Searchable command history

All cmd [https://docs.python.org/3/library/cmd.html]-based applications have access to previous commands with
the up- and down- arrow keys.

All cmd [https://docs.python.org/3/library/cmd.html]-based applications on systems with the readline module
also provide Readline Emacs editing mode [http://readline.kablamo.org/emacs.html]. With this you can, for example, use Ctrl-r to search backward through
the readline history.

cmd2 adds the option of making this readline history persistent via optional arguments to cmd2.Cmd.__init__():

	
Cmd.__init__(completekey='tab', stdin=None, stdout=None, persistent_history_file='', persistent_history_length=1000, startup_script=None, use_ipython=False, transcript_files=None)

	An easy but powerful framework for writing line-oriented command interpreters, extends Python’s cmd package.

	Parameters

	
	completekey – str - (optional) readline name of a completion key, default to Tab

	stdin – (optional) alternate input file object, if not specified, sys.stdin is used

	stdout – (optional) alternate output file object, if not specified, sys.stdout is used

	persistent_history_file – str - (optional) file path to load a persistent readline history from

	persistent_history_length – int - (optional) max number of lines which will be written to the history file

	startup_script – str - (optional) file path to a a script to load and execute at startup

	use_ipython – (optional) should the “ipy” command be included for an embedded IPython shell

	transcript_files – str - (optional) allows running transcript tests when allow_cli_args is False

cmd2 makes a third type of history access available with the history command:

	
Cmd.do_history(instance, cmdline)

	usage: history [-h] [-r | -e | -s | -o FILE | -t TRANSCRIPT] [arg]

View, run, edit, and save previously entered commands.

	positional arguments:

	
	arg empty all history items

	a one history item by number
a..b, a:b, a:, ..b items by indices (inclusive)
[string] items containing string
/regex/ items matching regular expression

	optional arguments:

	
	-h, --help

	show this help message and exit

	-r, --run

	run selected history items

	-e, --edit

	edit and then run selected history items

	-s, --script

	script format; no separation lines

	-o FILE, --output-file FILE

	output commands to a script file

	-t TRANSCRIPT, --transcript TRANSCRIPT

	output commands and results to a transcript file

Quitting the application

cmd2 pre-defines a quit command for you.
It’s trivial, but it’s one less thing for you to remember.

Misc. pre-defined commands

Several generically useful commands are defined
with automatically included do_ methods.

	
Cmd.do_quit(_)

	Exits this application.

	
Cmd.do_shell(command)

	Execute a command as if at the OS prompt.

Usage: shell <command> [arguments]

(! is a shortcut for shell; thus !ls
is equivalent to shell ls.)

Transcript-based testing

A transcript is both the input and output of a successful session of a
cmd2-based app which is saved to a text file. The transcript can be played
back into the app as a unit test.

$ python example.py --test transcript_regex.txt
.
--
Ran 1 test in 0.013s

OK

See Transcript based testing for more details.

Tab-Completion

cmd2 adds tab-completion of file system paths for all built-in commands where it makes sense, including:

	edit

	load

	pyscript

	shell

cmd2 also adds tab-completion of shell commands to the shell command.

Additionally, it is trivial to add identical file system path completion to your own custom commands. Suppose you
have defined a custom command foo by implementing the do_foo method. To enable path completion for the foo
command, then add a line of code similar to the following to your class which inherits from cmd2.Cmd:

Make sure you have an "import functools" somewhere at the top
complete_foo = functools.partial(path_complete)

This will effectively define the complete_foo readline completer method in your class and make it utilize the same
path completion logic as the built-in commands.

The built-in logic allows for a few more advanced path completion capabilities, such as cases where you only want to
match directories. Suppose you have a custom command bar implemented by the do_bar method. You can enable
path completion of directories only for this command by adding a line of code similar to the following to your class
which inherits from cmd2.Cmd:

Make sure you have an "import functools" somewhere at the top
complete_bar = functools.partial(path_complete, dir_only=True)

Features requiring only parameter changes

Several aspects of a cmd2 application’s behavior
can be controlled simply by setting attributes of App.
A parameter can also be changed at runtime by the user if
its name is included in the dictionary app.settable.
(To define your own user-settable parameters, see Other user-settable parameters)

Shortcuts

Command shortcuts for long command names and common commands can make life more convenient for your users.
Shortcuts are used without a space separating them from their arguments, like !ls. By default, the
following shortcuts are defined:

	?

	help

	!

	shell: run as OS-level command

	@

	load script file

	@@

	load script file; filename is relative to current script location

To define more shortcuts, update the dict App.shortcuts with the
{‘shortcut’: ‘command_name’} (omit do_):

class App(Cmd2):
 def __init__(self):
 # Make sure you update the shortcuts attribute before calling the super class __init__
 self.shortcuts.update({'*': 'sneeze', '~': 'squirm'})

 # Make sure to call this super class __init__ after updating shortcuts
 cmd2.Cmd.__init__(self)

Warning

Shortcuts need to be created by updating the shortcuts dictionary attribute prior to calling the
cmd2.Cmd super class __init__() method. Moreover, that super class init method needs to be called after
updating the shortcuts attribute This warning applies in general to many other attributes which are not
settable at runtime such as commentGrammars, multilineCommands, etc.

Aliases

In addition to shortcuts, cmd2 provides a full alias feature via the alias command which is similar to the
alias command in Bash.

The syntax to create an alias is alias <name> <value>. value can contain spaces and does not need
to be quoted. Ex: alias ls !ls -lF

If alias is run without arguments, then a list of all aliases will be printed to stdout and are in the proper
alias command syntax, meaning they can easily be reused.

The unalias is used to clear aliases. Using the -a flag will clear all aliases. Otherwise provide a list of
aliases to clear. Ex: unalias ls cd pwd will clear the aliases called ls, cd, and pwd.

Default to shell

Every cmd2 application can execute operating-system
level (shell) commands with shell or a !
shortcut:

(Cmd) shell which python
/usr/bin/python
(Cmd) !which python
/usr/bin/python

However, if the parameter default_to_shell is
True, then every command will be attempted on
the operating system. Only if that attempt fails
(i.e., produces a nonzero return value) will the
application’s own default method be called.

(Cmd) which python
/usr/bin/python
(Cmd) my dog has fleas
sh: my: not found
*** Unknown syntax: my dog has fleas

Quit on SIGINT

On many shells, SIGINT (most often triggered by the user
pressing Ctrl+C) only cancels the current line, not the
entire command loop. By default, a cmd2 application will quit
on receiving this signal. However, if quit_on_sigint is
set to False, then the current line will simply be cancelled.

(Cmd) typing a comma^C
(Cmd)

Timing

Setting App.timing to True outputs timing data after
every application command is executed. The user can set this parameter
during application execution.
(See Other user-settable parameters)

Echo

If True, each command the user issues will be repeated
to the screen before it is executed. This is particularly
useful when running scripts.

Debug

Setting App.debug to True will produce detailed error stacks
whenever the application generates an error. The user can set this parameter
during application execution.
(See Other user-settable parameters)

Other user-settable parameters

A list of all user-settable parameters, with brief
comments, is viewable from within a running application
with:

(Cmd) set --long
colors: True # Colorized output (*nix only)
continuation_prompt: > # On 2nd+ line of input
debug: False # Show full error stack on error
echo: False # Echo command issued into output
editor: vim # Program used by ``edit``
feedback_to_output: False # include nonessentials in `|`, `>` results
locals_in_py: True # Allow access to your application in py via self
prompt: (Cmd) # The prompt issued to solicit input
quiet: False # Don't print nonessential feedback
timing: False # Report execution times

Any of these user-settable parameters can be set while running your app with the set command like so:

set colors False

Features requiring application changes

Multiline commands

Command input may span multiple lines for the
commands whose names are listed in the
parameter app.multilineCommands. These
commands will be executed only
after the user has entered a terminator.
By default, the command terminators is
;; replacing or appending to the list
app.terminators allows different
terminators. A blank line
is always considered a command terminator
(cannot be overridden).

Parsed statements

cmd2 passes arg to a do_ method (or
default) as a ParsedString, a subclass of
string that includes an attribute parsed.
parsed is a pyparsing.ParseResults
object produced by applying a pyparsing [http://pyparsing.wikispaces.com/]
grammar applied to arg. It may include:

	command

	Name of the command called

	raw

	Full input exactly as typed.

	terminator

	Character used to end a multiline command

	suffix

	Remnant of input after terminator

def do_parsereport(self, arg):
 self.stdout.write(arg.parsed.dump() + '\n')

(Cmd) parsereport A B /* C */ D; E
['parsereport', 'A B D', ';', 'E']
- args: A B D
- command: parsereport
- raw: parsereport A B /* C */ D; E
- statement: ['parsereport', 'A B D', ';']
 - args: A B D
 - command: parsereport
 - terminator: ;
- suffix: E
- terminator: ;

If parsed does not contain an attribute,
querying for it will return None. (This
is a characteristic of pyparsing.ParseResults.)

The parsing grammar and process currently employed
by cmd2 is stable, but is likely significantly more
complex than it needs to be. Future cmd2 releases may
change it somewhat (hopefully reducing complexity).

(Getting arg as a ParsedString is
technically “free”, in that it requires no application
changes from the cmd [https://docs.python.org/3/library/cmd.html] standard, but there will
be no result unless you change your application
to use arg.parsed.)

Environment parameters

Your application can define user-settable parameters which your code can
reference. First create a class attribute with the default value. Then
update the settable dictionary with your setting name and a short
description before you initialize the superclass. Here’s an example, from
examples/environment.py:

#!/usr/bin/env python
coding=utf-8
"""
A sample application for cmd2 demonstrating customized environment parameters
"""

from cmd2 import Cmd

class EnvironmentApp(Cmd):
 """ Example cmd2 application. """

 degrees_c = 22
 sunny = False

 def __init__(self):
 self.settable.update({'degrees_c': 'Temperature in Celsius'})
 self.settable.update({'sunny': 'Is it sunny outside?'})
 Cmd.__init__(self)

 def do_sunbathe(self, arg):
 if self.degrees_c < 20:
 result = "It's {} C - are you a penguin?".format(self.degrees_c)
 elif not self.sunny:
 result = 'Too dim.'
 else:
 result = 'UV is bad for your skin.'
 self.poutput(result)

 def _onchange_degrees_c(self, old, new):
 # if it's over 40C, it's gotta be sunny, right?
 if new > 40:
 self.sunny = True

if __name__ == '__main__':
 c = EnvironmentApp()
 c.cmdloop()

If you want to be notified when a setting changes (as we do above), then
define a method _onchange_{setting}(). This method will be called after
the user changes a setting, and will receive both the old value and the new
value.

(Cmd) set --long | grep sunny
sunny: False # Is it sunny outside?
(Cmd) set --long | grep degrees
degrees_c: 22 # Temperature in Celsius
(Cmd) sunbathe
Too dim.
(Cmd) set degrees_c 41
degrees_c - was: 22
now: 41
(Cmd) set sunny
sunny: True
(Cmd) sunbathe
UV is bad for your skin.
(Cmd) set degrees_c 13
degrees_c - was: 41
now: 13
(Cmd) sunbathe
It's 13 C - are you a penguin?

Commands with flags

All do_ methods are responsible for interpreting
the arguments passed to them. However, cmd2 lets
a do_ methods accept Unix-style flags. It uses argparse [https://docs.python.org/3/library/argparse.html]
to parse the flags, and they work the same way as for
that module.

cmd2 defines a few decorators which change the behavior of
how arguments get parsed for and passed to a do_ method. See the section Argument Processing for more information.

Controlling how arguments are parsed for commands with flags

There are a couple functions which can globally effect how arguments are parsed for commands with flags:

	
cmd2.set_posix_shlex(val)

	Allows user of cmd2 to choose between POSIX and non-POSIX splitting of args for decorated commands.

	Parameters

	val – bool - True => POSIX, False => Non-POSIX

	
cmd2.set_strip_quotes(val)

	Allows user of cmd2 to choose whether to automatically strip outer-quotes when POSIX_SHLEX is False.

	Parameters

	val – bool - True => strip quotes on args for decorated commands if POSIX_SHLEX is False.

poutput, pfeedback, perror, ppaged

Standard cmd applications produce their output with self.stdout.write('output') (or with print,
but print decreases output flexibility). cmd2 applications can use
self.poutput('output'), self.pfeedback('message'), self.perror('errmsg'), and self.ppaged('text')
instead. These methods have these advantages:

	Handle output redirection to file and/or pipe appropriately

	
	More concise

	
	.pfeedback() destination is controlled by quiet parameter.

	Option to display long output using a pager via ppaged()

	
Cmd.poutput(msg, end='\n')

	Convenient shortcut for self.stdout.write(); by default adds newline to end if not already present.

Also handles BrokenPipeError exceptions for when a commands’s output has been piped to another process and
that process terminates before the cmd2 command is finished executing.

	Parameters

	
	msg – str - message to print to current stdout - anything convertible to a str with ‘{}’.format() is OK

	end – str - string appended after the end of the message if not already present, default a newline

	
Cmd.perror(errmsg, exception_type=None, traceback_war=True)

	Print error message to sys.stderr and if debug is true, print an exception Traceback if one exists.

	Parameters

	
	errmsg – str - error message to print out

	exception_type – str - (optional) type of exception which precipitated this error message

	traceback_war – bool - (optional) if True, print a message to let user know they can enable debug

	Returns

	

	
Cmd.pfeedback(msg)

	For printing nonessential feedback. Can be silenced with quiet.
Inclusion in redirected output is controlled by feedback_to_output.

	
Cmd.ppaged(msg, end='\n')

	Print output using a pager if it would go off screen and stdout isn’t currently being redirected.

Never uses a pager inside of a script (Python or text) or when output is being redirected or piped or when
stdout or stdin are not a fully functional terminal.

	Parameters

	
	msg – str - message to print to current stdout - anything convertible to a str with ‘{}’.format() is OK

	end – str - string appended after the end of the message if not already present, default a newline

color

Text output can be colored by wrapping it in the colorize method.

	
Cmd.colorize(val, color)

	Given a string (val), returns that string wrapped in UNIX-style
special characters that turn on (and then off) text color and style.
If the colors environment parameter is False, or the application
is running on Windows, will return val unchanged.
color should be one of the supported strings (or styles):
red/blue/green/cyan/magenta, bold, underline

quiet

Controls whether self.pfeedback('message') output is suppressed;
useful for non-essential feedback that the user may not always want
to read. quiet is only relevant if
app.pfeedback is sometimes used.

select

Presents numbered options to user, as bash select.

app.select is called from within a method (not by the user directly; it is app.select, not app.do_select).

	
Cmd.select(opts, prompt='Your choice? ')

	Presents a numbered menu to the user. Modelled after
the bash shell’s SELECT. Returns the item chosen.

Argument opts can be:

a single string -> will be split into one-word options

a list of strings -> will be offered as options

a list of tuples -> interpreted as (value, text), so
that the return value can differ from
the text advertised to the user

def do_eat(self, arg):
 sauce = self.select('sweet salty', 'Sauce? ')
 result = '{food} with {sauce} sauce, yum!'
 result = result.format(food=arg, sauce=sauce)
 self.stdout.write(result + '\n')

(Cmd) eat wheaties
 1. sweet
 2. salty
Sauce? 2
wheaties with salty sauce, yum!

Transcript based testing

A transcript is both the input and output of a successful session of a
cmd2-based app which is saved to a text file. With no extra work on your
part, your app can play back these transcripts as a unit test. Transcripts can
contain regular expressions, which provide the flexibility to match responses
from commands that produce dynamic or variable output.

Creating a transcript

Automatically

A transcript can automatically generated based upon commands previously executed in the history:

(Cmd) help
...
(Cmd) help history
...
(Cmd) history 1:2 -t transcript.txt
2 commands and outputs saved to transcript file 'transcript.txt'

This is by far the easiest way to generate a transcript.

Warning

Make sure you use the poutput() method in your cmd2 application for generating command output. This method
of the cmd2.Cmd class ensure that output is properly redirected when redirecting to a file, piping to a shell
command, and when generating a transcript.

Manually

Here’s a transcript created from python examples/example.py:

(Cmd) say -r 3 Goodnight, Gracie
Goodnight, Gracie
Goodnight, Gracie
Goodnight, Gracie
(Cmd) mumble maybe we could go to lunch
like maybe we ... could go to hmmm lunch
(Cmd) mumble maybe we could go to lunch
well maybe we could like go to er lunch right?

This transcript has three commands: they are on the lines that begin with the
prompt. The first command looks like this:

(Cmd) say -r 3 Goodnight, Gracie

Following each command is the output generated by that command.

The transcript ignores all lines in the file until it reaches the first line
that begins with the prompt. You can take advantage of this by using the first
lines of the transcript as comments:

Lines at the beginning of the transcript that do not
; start with the prompt i.e. '(Cmd) ' are ignored.
/* You can use them for comments. */

All six of these lines before the first prompt are treated as comments.

(Cmd) say -r 3 Goodnight, Gracie
Goodnight, Gracie
Goodnight, Gracie
Goodnight, Gracie
(Cmd) mumble maybe we could go to lunch
like maybe we ... could go to hmmm lunch
(Cmd) mumble maybe we could go to lunch
maybe we could like go to er lunch right?

In this example I’ve used several different commenting styles, and even bare
text. It doesn’t matter what you put on those beginning lines. Everything before:

(Cmd) say -r 3 Goodnight, Gracie

will be ignored.

Regular Expressions

If we used the above transcript as-is, it would likely fail. As you can see,
the mumble command doesn’t always return the same thing: it inserts random
words into the input.

Regular expressions can be included in the response portion of a transcript,
and are surrounded by slashes:

(Cmd) mumble maybe we could go to lunch
/.*\bmaybe\b.*\bcould\b.*\blunch\b.*/
(Cmd) mumble maybe we could go to lunch
/.*\bmaybe\b.*\bcould\b.*\blunch\b.*/

Without creating a tutorial on regular expressions, this one matches anything
that has the words maybe, could, and lunch in that order. It doesn’t
ensure that we or go or to appear in the output, but it does work if
mumble happens to add words to the beginning or the end of the output.

Since the output could be multiple lines long, cmd2 uses multiline regular
expression matching, and also uses the DOTALL flag. These two flags subtly
change the behavior of commonly used special characters like ., ^ and
$, so you may want to double check the Python regular expression
documentation [https://docs.python.org/3/library/re.html].

If your output has slashes in it, you will need to escape those slashes so the
stuff between them is not interpred as a regular expression. In this transcript:

(Cmd) say cd /usr/local/lib/python3.6/site-packages
/usr/local/lib/python3.6/site-packages

the output contains slashes. The text between the first slash and the second
slash, will be interpreted as a regular expression, and those two slashes will
not be included in the comparison. When replayed, this transcript would
therefore fail. To fix it, we could either write a regular expression to match
the path instead of specifying it verbatim, or we can escape the slashes:

(Cmd) say cd /usr/local/lib/python3.6/site-packages
\/usr\/local\/lib\/python3.6\/site-packages

Warning

Be aware of trailing spaces and newlines. Your commands might output
trailing spaces which are impossible to see. Instead of leaving them
invisible, you can add a regular expression to match them, so that you can
see where they are when you look at the transcript:

(Cmd) set prompt
prompt: (Cmd)/ /

Some terminal emulators strip trailing space when you copy text from them.
This could make the actual data generated by your app different than the
text you pasted into the transcript, and it might not be readily obvious why
the transcript is not passing. Consider using Output redirection to
the clipboard or to a file to ensure you accurately capture the output of
your command.

If you aren’t using regular expressions, make sure the newlines at the end
of your transcript exactly match the output of your commands. A common cause
of a failing transcript is an extra or missing newline.

If you are using regular expressions, be aware that depending on how you
write your regex, the newlines after the regex may or may not matter.
\Z matches after the newline at the end of the string, whereas
$ matches the end of the string or just before a newline.

Running a transcript

Once you have created a transcript, it’s easy to have your application play it
back and check the output. From within the examples/ directory:

$ python example.py --test transcript_regex.txt
.
--
Ran 1 test in 0.013s

OK

The output will look familiar if you use unittest, because that’s exactly
what happens. Each command in the transcript is run, and we assert the
output matches the expected result from the transcript.

Note

If you have set allow_cli_args to False in order to disable parsing of
command line arguments at invocation, then the use of -t or --test
to run transcript testing is automatically disabled. In this case, you can
alternatively provide a value for the optional transcript_files when
constructing the instance of your cmd2.Cmd derived class in order to
cause a transcript test to run:

from cmd2 import Cmd
class App(Cmd):
 # customized attributes and methods here

if __name__ == '__main__':
 app = App(transcript_files=['exampleSession.txt'])
 app.cmdloop()

Argument Processing

cmd2 makes it easy to add sophisticated argument processing to your commands using the argparse python module.
cmd2 handles the following for you:

	Parsing input and quoted strings like the Unix shell

	Parse the resulting argument list using an instance of argparse.ArgumentParser that you provide

	Passes the resulting argparse.Namespace object to your command function

	Adds the usage message from the argument parser to your command.

	Checks if the -h/--help option is present, and if so, display the help message for the command

These features are all provided by the @with_argparser decorator which is importable from cmd2.

See the either the argprint [https://github.com/python-cmd2/cmd2/blob/master/examples/arg_print.py] or argparse [https://github.com/python-cmd2/cmd2/blob/master/examples/argparse_example.py] example to learn more about how to use the various cmd2 argument
processing decorators in your cmd2 applications.

Using the argument parser decorator

For each command in the cmd2 subclass which requires argument parsing,
create an instance of argparse.ArgumentParser() which can parse the
input appropriately for the command. Then decorate the command method with
the @with_argparser decorator, passing the argument parser as the
first parameter to the decorator. This changes the second argumen to the command method, which will contain the results
of ArgumentParser.parse_args().

Here’s what it looks like:

import argparse
from cmd2 import with_argparser

argparser = argparse.ArgumentParser()
argparser.add_argument('-p', '--piglatin', action='store_true', help='atinLay')
argparser.add_argument('-s', '--shout', action='store_true', help='N00B EMULATION MODE')
argparser.add_argument('-r', '--repeat', type=int, help='output [n] times')
argparser.add_argument('word', nargs='?', help='word to say')

@with_argparser(argparser)
def do_speak(self, opts)
 """Repeats what you tell me to."""
 arg = opts.word
 if opts.piglatin:
 arg = '%s%say' % (arg[1:], arg[0])
 if opts.shout:
 arg = arg.upper()
 repetitions = opts.repeat or 1
 for i in range(min(repetitions, self.maxrepeats)):
 self.poutput(arg)

Note

The @with_argparser decorator sets the prog variable in
the argument parser based on the name of the method it is decorating.
This will override anything you specify in prog variable when
creating the argument parser.

Help Messages

By default, cmd2 uses the docstring of the command method when a user asks
for help on the command. When you use the @with_argparser
decorator, the docstring for the do_* method is used to set the description for the argparse.ArgumentParser is
With this code:

import argparse
from cmd2 import with_argparser

argparser = argparse.ArgumentParser()
argparser.add_argument('tag', help='tag')
argparser.add_argument('content', nargs='+', help='content to surround with tag')
@with_argparser(argparser)
def do_tag(self, args):
 """create a html tag"""
 self.stdout.write('<{0}>{1}</{0}>'.format(args.tag, ' '.join(args.content)))
 self.stdout.write('\n')

The help tag command displays:

usage: tag [-h] tag content [content ...]

create a html tag

positional arguments:
 tag tag
 content content to surround with tag

optional arguments:
 -h, --help show this help message and exit

If you would prefer you can set the description while instantiating the argparse.ArgumentParser and leave the
docstring on your method empty:

import argparse
from cmd2 import with_argparser

argparser = argparse.ArgumentParser(description='create an html tag')
argparser.add_argument('tag', help='tag')
argparser.add_argument('content', nargs='+', help='content to surround with tag')
@with_argparser(argparser)
def do_tag(self, args):
 self.stdout.write('<{0}>{1}</{0}>'.format(args.tag, ' '.join(args.content)))
 self.stdout.write('\n')

Now when the user enters help tag they see:

usage: tag [-h] tag content [content ...]

create an html tag

positional arguments:
 tag tag
 content content to surround with tag

optional arguments:
 -h, --help show this help message and exit

To add additional text to the end of the generated help message, use the epilog variable:

import argparse
from cmd2 import with_argparser

argparser = argparse.ArgumentParser(description='create an html tag',
 epilog='This command can not generate tags with no content, like
.')
argparser.add_argument('tag', help='tag')
argparser.add_argument('content', nargs='+', help='content to surround with tag')
@with_argparser(argparser)
def do_tag(self, args):
 self.stdout.write('<{0}>{1}</{0}>'.format(args.tag, ' '.join(args.content)))
 self.stdout.write('\n')

Which yields:

usage: tag [-h] tag content [content ...]

create an html tag

positional arguments:
 tag tag
 content content to surround with tag

optional arguments:
 -h, --help show this help message and exit

This command can not generate tags with no content, like

Receiving an argument list

The default behavior of cmd2 is to pass the user input directly to your
do_* methods as a string. If you don’t want to use the full argument parser support outlined above, you can still have cmd2 apply shell parsing rules to the user input and pass you a list of arguments instead of a string. Apply the @with_argument_list decorator to those methods that should receive an argument list instead of a string:

from cmd2 import with_argument_list

class CmdLineApp(cmd2.Cmd):
 """ Example cmd2 application. """

 def do_say(self, cmdline):
 # cmdline contains a string
 pass

 @with_argument_list
 def do_speak(self, arglist):
 # arglist contains a list of arguments
 pass

Using the argument parser decorator and also receiving a a list of unknown positional arguments

If you want all unknown arguments to be passed to your command as a list of strings, then
decorate the command method with the @with_argparser_and_unknown_args decorator.

Here’s what it looks like:

import argparse
from cmd2 import with_argparser_and_unknown_args

dir_parser = argparse.ArgumentParser()
dir_parser.add_argument('-l', '--long', action='store_true', help="display in long format with one item per line")

@with_argparser_and_unknown_args(dir_parser)
def do_dir(self, args, unknown):
 """List contents of current directory."""
 # No arguments for this command
 if unknown:
 self.perror("dir does not take any positional arguments:", traceback_war=False)
 self.do_help('dir')
 self._last_result = CmdResult('', 'Bad arguments')
 return

 # Get the contents as a list
 contents = os.listdir(self.cwd)

 ...

Sub-commands

Sub-commands are supported for commands using either the @with_argparser or
@with_argparser_and_unknown_args decorator. The syntax for supporting them is based on argparse sub-parsers.

Also, a convenience function called cmd_with_subs_completer is available to easily add tab completion to functions
that implement subcommands. By setting this as the completer of the base command function, the correct completer for
the chosen subcommand will be called.

See the subcommands [https://github.com/python-cmd2/cmd2/blob/master/examples/subcommands.py] example to learn more about how to use sub-commands in your cmd2 application.
This example also demonstrates usage of cmd_with_subs_completer. In addition, the docstring for
cmd_with_subs_completer offers more details.

Deprecated optparse support

The optparse library has been deprecated since Python 2.7 (released on July
3rd 2010) and Python 3.2 (released on February 20th, 2011). optparse is
still included in the python standard library, but the documentation
recommends using argparse instead.

cmd2 includes a decorator which can parse arguments using optparse. This decorator is deprecated just like the optparse library.

Here’s an example:

from optparse import make_option
from cmd2 import options

opts = [make_option('-p', '--piglatin', action="store_true", help="atinLay"),
 make_option('-s', '--shout', action="store_true", help="N00B EMULATION MODE"),
 make_option('-r', '--repeat', type="int", help="output [n] times")]

@options(opts, arg_desc='(text to say)')
def do_speak(self, arg, opts=None):
 """Repeats what you tell me to."""
 arg = ''.join(arg)
 if opts.piglatin:
 arg = '%s%say' % (arg[1:], arg[0])
 if opts.shout:
 arg = arg.upper()
 repetitions = opts.repeat or 1
 for i in range(min(repetitions, self.maxrepeats)):
 self.poutput(arg)

The optparse decorator performs the following key functions for you:

	Use shlex to split the arguments entered by the user.

	Parse the arguments using the given optparse options.

	Replace the __doc__ string of the decorated function (i.e. do_speak) with the help string generated by optparse.

	Call the decorated function (i.e. do_speak) passing an additional parameter which contains the parsed options.

Integrating cmd2 with external tools

Throughout this documentation we have focused on the 90% use case, that is the use case we believe around 90+% of
our user base is looking for. This focuses on ease of use and the best out-of-the-box experience where developers get
the most functionality for the least amount of effort. We are talking about running cmd2 applications with the
cmdloop() method:

from cmd2 import Cmd
class App(Cmd):
 # customized attributes and methods here
app = App()
app.cmdloop()

However, there are some limitations to this way of using
cmd2, mainly that cmd2 owns the inner loop of a program. This can be unnecessarily restrictive and can prevent
using libraries which depend on controlling their own event loop.

Integrating cmd2 with event loops

Many Python concurrency libraries involve or require an event loop which they are in control of such as asyncio [https://docs.python.org/3/library/asyncio.html],
gevent [http://www.gevent.org/], Twisted [https://twistedmatrix.com], etc.

cmd2 applications can be executed in a fashion where cmd2 doesn’t own the main loop for the program by using
code like the following:

import cmd2

class Cmd2EventBased(cmd2.Cmd):
 def __init__(self):
 cmd2.Cmd.__init__(self)

 # ... your class code here ...

if __name__ == '__main__':
 app = Cmd2EventBased()
 app.preloop()

 # Do this within whatever event loop mechanism you wish to run a single command
 cmd_line_text = "help history"
 app.runcmds_plus_hooks([cmd_line_text])

 app.postloop()

The runcmds_plus_hooks() method is a convenience method to run multiple commands via onecmd_plus_hooks(). It
properly deals with load commands which under the hood put commands in a FIFO queue as it reads them in from a
script file.

The onecmd_plus_hooks() method will do the following to execute a single cmd2 command in a normal fashion:

	Parse the command line text

	Execute postparsing_precmd()

	Add the command to the history

	Apply output redirection, if present

	Execute precmd()

	Execute onecmd() - this is what actually runs the command

	Execute postcmd()

	Undo output rediriection (if present) and perform piping, if present

	Execute postparsing_postcmd()

Running in this fashion enables the ability to integrate with an external event loop. However, how to integrate with
any specific event loop is beyond the scope of this documentation. Please note that running in this fashion comes with
several disadvantages, including:

	Requires the developer to write more code

	Does not support transcript testing

	Does not allow commands at invocation via command-line arguments

Here is a little more info on runcmds_plus_hooks:

	
Cmd.runcmds_plus_hooks(cmds)

	Convenience method to run multiple commands by onecmd_plus_hooks.

This method adds the given cmds to the command queue and processes the
queue until completion or an error causes it to abort. Scripts that are
loaded will have their commands added to the queue. Scripts may even
load other scripts recursively. This means, however, that you should not
use this method if there is a running cmdloop or some other event-loop.
This method is only intended to be used in “one-off” scenarios.

NOTE: You may need this method even if you only have one command. If
that command is a load, then you will need this command to fully process
all the subsequent commands that are loaded from the script file. This
is an improvement over onecmd_plus_hooks, which expects to be used
inside of a command loop which does the processing of loaded commands.

Example: cmd_obj.runcmds_plus_hooks([‘load myscript.txt’])

	Parameters

	cmds – list - Command strings suitable for onecmd_plus_hooks.

	Returns

	bool - True implies the entire application should exit.

cmd2 Application Lifecycle and Hooks

The typical way of starting a cmd2 application is as follows:

from cmd2 import Cmd
class App(Cmd):
 # customized attributes and methods here
app = App()
app.cmdloop()

There are several pre-existing methods and attributes which you can tweak to control the overall behavior of your
application before, during, and after the main loop.

Application Lifecycle Hook Methods

The preloop and postloop methods run before and after the main loop, respectively.

	
Cmd.preloop()

	Hook method executed once when the cmdloop() method is called.

	
Cmd.postloop()

	Hook method executed once when the cmdloop() method is about to
return.

Application Lifecycle Attributes

There are numerous attributes (member variables of the cmd2.Cmd) which have a significant effect on the application
behavior upon entering or during the main loop. A partial list of some of the more important ones is presented here:

	intro: str - if provided this serves as the intro banner printed once at start of application, after preloop runs

	
	allow_cli_args: bool - if True (default), then searches for -t or –test at command line to invoke transcript testing mode instead of a normal main loop

	and also processes any commands provided as arguments on the command line just prior to entering the main loop

	echo: bool - if True, then the command line entered is echoed to the screen (most useful when running scripts)

	
	prompt: str - sets the prompt which is displayed, can be dynamically changed based on application state and/or

	command results

Command Processing Hooks

Inside the main loop, every time the user hits <Enter> the line is processed by the onecmd_plus_hooks method.

	
Cmd.onecmd_plus_hooks(line)

	Top-level function called by cmdloop() to handle parsing a line and running the command and all of its hooks.

	Parameters

	line – str - line of text read from input

	Returns

	bool - True if cmdloop() should exit, False otherwise

As the onecmd_plus_hooks name implies, there are a number of hook methods that can be defined in order to inject
application-specific behavior at various points during the processing of a line of text entered by the user. cmd2
increases the 2 hooks provided by cmd (precmd and postcmd) to 6 for greater flexibility. Here are
the various hook methods, presented in chronological order starting with the ones called earliest in the process.

	
Cmd.preparse(raw)

	Hook method executed just before the command line is interpreted, but after the input prompt is generated.

	Parameters

	raw – str - raw command line input

	Returns

	str - potentially modified raw command line input

	
Cmd.postparse(parse_result)

	Hook that runs immediately after parsing the command-line but before parsed() returns a ParsedString.

	Parameters

	parse_result – pyparsing.ParseResults - parsing results output by the pyparsing parser

	Returns

	pyparsing.ParseResults - potentially modified ParseResults object

	
Cmd.postparsing_precmd(statement)

	This runs after parsing the command-line, but before anything else; even before adding cmd to history.

NOTE: This runs before precmd() and prior to any potential output redirection or piping.

If you wish to fatally fail this command and exit the application entirely, set stop = True.

If you wish to just fail this command you can do so by raising an exception:

	raise EmptyStatement - will silently fail and do nothing

	raise <AnyOtherException> - will fail and print an error message

	Parameters

	statement –
	the parsed command-line statement

	Returns

	(bool, statement) - (stop, statement) containing a potentially modified version of the statement

	
Cmd.precmd(statement)

	Hook method executed just before the command is processed by onecmd() and after adding it to the history.

	Parameters

	statement – ParsedString - subclass of str which also contains pyparsing ParseResults instance

	Returns

	ParsedString - a potentially modified version of the input ParsedString statement

	
Cmd.postcmd(stop, line)

	Hook method executed just after a command dispatch is finished.

	
Cmd.postparsing_postcmd(stop)

	This runs after everything else, including after postcmd().

It even runs when an empty line is entered. Thus, if you need to do something like update the prompt due
to notifications from a background thread, then this is the method you want to override to do it.

	Parameters

	stop – bool - True implies the entire application should exit.

	Returns

	bool - True implies the entire application should exit.

Alternatives to cmd and cmd2

For programs that do not interact with the user in a continuous loop -
programs that simply accept a set of arguments from the command line, return
results, and do not keep the user within the program’s environment - all
you need are sys [https://docs.python.org/3/library/sys.html].argv (the command-line arguments) and argparse [https://docs.python.org/3/library/argparse.html]
(for parsing UNIX-style options and flags). Though some people may prefer docopt [https://pypi.python.org/pypi/docopt]
or click [http://click.pocoo.org] to argparse [https://docs.python.org/3/library/argparse.html].

The curses [https://docs.python.org/3/library/curses.html] module produces applications that interact via a plaintext
terminal window, but are not limited to simple text input and output;
they can paint the screen with options that are selected from using the
cursor keys. However, programming a curses [https://docs.python.org/3/library/curses.html]-based application is not as
straightforward as using cmd [https://docs.python.org/3/library/cmd.html].

Several Python packages exist for building interactive command-line applications
approximately similar in concept to cmd [https://docs.python.org/3/library/cmd.html] applications. None of them
share cmd2’s close ties to cmd [https://docs.python.org/3/library/cmd.html], but they may be worth investigating
nonetheless. Two of the most mature and full featured are:

	Python Prompt Toolkit [https://github.com/jonathanslenders/python-prompt-toolkit]

	Click [http://click.pocoo.org]

Python Prompt Toolkit [https://github.com/jonathanslenders/python-prompt-toolkit] is a library for building powerful interactive command lines and terminal applications in
Python. It provides a lot of advanced visual features like syntax highlighting, bottom bars, and the ability to
create fullscreen apps.

Click [http://click.pocoo.org] is a Python package for creating beautiful command line interfaces in a composable way with as little code as
necessary. It is more geared towards command line utilities instead of command line interpreters, but it can be used
for either.

Getting a working command-interpreter application based on either Python Prompt Toolkit [https://github.com/jonathanslenders/python-prompt-toolkit] or Click [http://click.pocoo.org] requires a good
deal more effort and boilerplate code than cmd2. cmd2 focuses on providing an excellent out-of-the-box experience
with as many useful features as possible built in for free with as little work required on the developer’s part as
possible. We believe that cmd2 provides developers the easiest way to write a command-line interpreter, while
allowing a good experience for end users. If you are seeking a visually richer end-user experience and don’t
mind investing more development time, we would recommend checking out Python Prompt Toolkit [https://github.com/jonathanslenders/python-prompt-toolkit].

In the future, we may investigate options for incorporating the usage of Python Prompt Toolkit [https://github.com/jonathanslenders/python-prompt-toolkit] and/or Click [http://click.pocoo.org] into
cmd2 applications.

Index

 _
 | C
 | D
 | O
 | P
 | R
 | S

_

 	
 	__init__() (cmd2.Cmd method)

C

 	
 	colorize() (cmd2.Cmd method)

D

 	
 	do__relative_load() (cmd2.Cmd method)

 	do_edit() (cmd2.Cmd method)

 	do_history() (cmd2.Cmd method)

 	
 	do_load() (cmd2.Cmd method)

 	do_quit() (cmd2.Cmd method)

 	do_shell() (cmd2.Cmd method)

O

 	
 	onecmd_plus_hooks() (cmd2.Cmd method)

P

 	
 	perror() (cmd2.Cmd method)

 	pfeedback() (cmd2.Cmd method)

 	postcmd() (cmd2.Cmd method)

 	postloop() (cmd2.Cmd method)

 	postparse() (cmd2.Cmd method)

 	postparsing_postcmd() (cmd2.Cmd method)

 	
 	postparsing_precmd() (cmd2.Cmd method)

 	poutput() (cmd2.Cmd method)

 	ppaged() (cmd2.Cmd method)

 	precmd() (cmd2.Cmd method)

 	preloop() (cmd2.Cmd method)

 	preparse() (cmd2.Cmd method)

R

 	
 	runcmds_plus_hooks() (cmd2.Cmd method)

S

 	
 	select() (cmd2.Cmd method)

 	
 	set_posix_shlex() (in module cmd2)

 	set_strip_quotes() (in module cmd2)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 cmd2

 		
 Installation Instructions

 		
 Installing

 		
 Requirements for Installing

 		
 Use pip for Installing

 		
 Install from GitHub using pip

 		
 Install from Debian or Ubuntu repos

 		
 Deploy cmd2.py with your project

 		
 Upgrading cmd2

 		
 Uninstalling cmd2

 		
 Extra requirement for Python 3.4 and earlier

 		
 Extra requirement for Python 2.7 only

 		
 Extra requirement for macOS

 		
 gnureadline Python module

 		
 readline via conda

 		
 readline via brew

 		
 Overview

 		
 Features requiring no modifications

 		
 Script files

 		
 Comments

 		
 Startup Initialization Script

 		
 Commands at invocation

 		
 Output redirection

 		
 Python

 		
 IPython (optional)

 		
 Searchable command history

 		
 Quitting the application

 		
 Misc. pre-defined commands

 		
 Transcript-based testing

 		
 Tab-Completion

 		
 Features requiring only parameter changes

 		
 Shortcuts

 		
 Aliases

 		
 Default to shell

 		
 Quit on SIGINT

 		
 Timing

 		
 Echo

 		
 Debug

 		
 Other user-settable parameters

 		
 Features requiring application changes

 		
 Multiline commands

 		
 Parsed statements

 		
 Environment parameters

 		
 Commands with flags

 		
 Controlling how arguments are parsed for commands with flags

 		
 poutput, pfeedback, perror, ppaged

 		
 color

 		
 quiet

 		
 select

 		
 Transcript based testing

 		
 Creating a transcript

 		
 Automatically

 		
 Manually

 		
 Regular Expressions

 		
 Running a transcript

 		
 Argument Processing

 		
 Using the argument parser decorator

 		
 Help Messages

 		
 Receiving an argument list

 		
 Using the argument parser decorator and also receiving a a list of unknown positional arguments

 		
 Sub-commands

 		
 Deprecated optparse support

 		
 Integrating cmd2 with external tools

 		
 Integrating cmd2 with event loops

 		
 cmd2 Application Lifecycle and Hooks

 		
 Application Lifecycle Hook Methods

 		
 Application Lifecycle Attributes

 		
 Command Processing Hooks

 		
 Alternatives to cmd and cmd2

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

