
cmd2 Documentation
Release 0.6.9a

Catherine Devlin

January 29, 2017

Contents

1 Resources 3
1.1 Overview . 3
1.2 Features requiring no modifications . 3
1.3 Features requiring only parameter changes . 6
1.4 Features requiring application changes . 7
1.5 Alternatives to cmd and cmd2 . 11

2 Compatibility 13

3 Indices and tables 15

i

ii

cmd2 Documentation, Release 0.6.9a

A python package for building powerful command-line interpreter (CLI) programs. Extends the Python Standard
Library’s cmd package.

The basic use of cmd2 is identical to that of cmd.

1. Create a subclass of cmd2.Cmd. Define attributes and do_* methods to control its behavior. Throughout this
documentation, we will assume that you are naming your subclass App:

from cmd2 import Cmd
class App(Cmd):

customized attributes and methods here

2. Instantiate App and start the command loop:

app = App()
app.cmdloop()

Contents 1

http://docs.python.org/library/cmd.html#module-cmd
http://docs.python.org/library/cmd.html#module-cmd

cmd2 Documentation, Release 0.6.9a

2 Contents

CHAPTER 1

Resources

• cmd

• project bug tracker

• cmd2 project page

• PyCon 2010 presentation, Easy Command-Line Applications with cmd and cmd2: slides, video

These docs will refer to App as your cmd2.Cmd subclass, and app as an instance of App. Of course, in your program,
you may name them whatever you want.

Contents:

1.1 Overview

cmd2 is an extension of cmd, the Python Standard Library’s module for creating simple interactive command-line
applications.

cmd2 can be used as a drop-in replacement for cmd. Simply importing cmd2 in place of cmd will add many features
to an application without any further modifications.

Understanding the use of cmd is the first step in learning the use of cmd2. Once you have read the cmd docs, return
here to learn the ways that cmd2 differs from cmd.

1.2 Features requiring no modifications

These features are provided “for free” to a cmd-based application simply by replacing import cmd with import
cmd2 as cmd.

1.2.1 Script files

Text files can serve as scripts for your cmd2-based application, with the load, save, and edit commands.

1.2.2 Comments

Comments are omitted from the argument list before it is passed to a do_ method. By default, both Python-style and
C-style comments are recognized; you may change this by overriding app.commentGrammars with a different
pyparsing grammar.

3

http://docs.python.org/library/cmd.html#module-cmd
https://bitbucket.org/catherinedevlin/cmd2/issues
https://bitbucket.org/catherinedevlin/cmd2
http://us.pycon.org/2010/conference/talks/#proposal_link_153
http://python.mirocommunity.com/video/1533/easy-command-line-applications
http://docs.python.org/library/cmd.html
http://docs.python.org/library/cmd.html
http://docs.python.org/library/cmd.html
http://docs.python.org/library/cmd.html
http://docs.python.org/library/cmd.html
http://docs.python.org/library/cmd.html
http://docs.python.org/library/cmd.html#module-cmd
http://pyparsing.wikispaces.com/

cmd2 Documentation, Release 0.6.9a

Comments can be useful in scripts. Used in an interactive session, they may indicate mental imbalance.

def do_speak(self, arg):
self.stdout.write(arg + '\n')

(Cmd) speak it was /* not */ delicious! # Yuck!
it was delicious!

1.2.3 Commands at invocation

You can send commands to your app as you invoke it by including them as extra arguments to the program. cmd2
interprets each argument as a separate command, so you should enclose each command in quotation marks if it is more
than a one-word command.

cat@eee:~/proj/cmd2/example$ python example.py "say hello" "say Gracie" quit
hello
Gracie
cat@eee:~/proj/cmd2/example$

1.2.4 Output redirection

As in a Unix shell, output of a command can be redirected:

• sent to a file with >, as in mycommand args > filename.txt

• piped (|) as input to operating-system commands, as in mycommand args | wc

• sent to the paste buffer, ready for the next Copy operation, by ending with a bare >, as in mycommand args
>.. Redirecting to paste buffer requires software to be installed on the operating system, pywin32 on Windows
or xclip on *nix.

If your application depends on mathematical syntax, > may be a bad choice for redirecting output - it will pre-
vent you from using the greater-than sign in your actual user commands. You can override your app’s value of
self.redirector to use a different string for output redirection:

class MyApp(cmd2.Cmd):
redirector = '->'

(Cmd) say line1 -> out.txt
(Cmd) say line2 ->-> out.txt
(Cmd) !cat out.txt
line1
line2

1.2.5 Python

The py command will run its arguments as a Python command. Entered without arguments, it enters an interactive
Python session. That session can call “back” to your application with cmd(""). Through self, it also has access to
your application instance itself. (If that thought terrifies you, you can set the locals_in_py parameter to False.
See see parameters)

(Cmd) py print("-".join("spelling"))
s-p-e-l-l-i-n-g
(Cmd) py
Python 2.6.4 (r264:75706, Dec 7 2009, 18:45:15)

4 Chapter 1. Resources

http://sourceforge.net/projects/pywin32/
http://www.cyberciti.biz/faq/xclip-linux-insert-files-command-output-intoclipboard/

cmd2 Documentation, Release 0.6.9a

[GCC 4.4.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(CmdLineApp)

py <command>: Executes a Python command.
py: Enters interactive Python mode.
End with `Ctrl-D` (Unix) / `Ctrl-Z` (Windows), `quit()`, 'exit()`.
Non-python commands can be issued with `cmd("your command")`.

>>> import os
>>> os.uname()
('Linux', 'eee', '2.6.31-19-generic', '#56-Ubuntu SMP Thu Jan 28 01:26:53 UTC 2010', 'i686')
>>> cmd("say --piglatin {os}".format(os=os.uname()[0]))
inuxLay
>>> self.prompt
'(Cmd) '
>>> self.prompt = 'Python was here > '
>>> quit()
Python was here >

1.2.6 Searchable command history

All cmd-based applications have access to previous commands with the up- and down- cursor keys.

All cmd-based applications on systems with the readline module also provide bash-like history list editing.

cmd2 makes a third type of history access available, consisting of these commands:

1.2.7 Quitting the application

cmd2 pre-defines a quit command for you (with synonyms exit and simply q). It’s trivial, but it’s one less thing
for you to remember.

1.2.8 Abbreviated commands

cmd2 apps will accept shortened command names so long as there is no ambiguity. Thus, if do_divide is defined,
then divid, div, or even d will suffice, so long as there are no other commands defined beginning with divid, div,
or d.

This behavior can be turned off with app.abbrev (see parameters)

1.2.9 Misc. pre-defined commands

Several generically useful commands are defined with automatically included do_ methods.

(! is a shortcut for shell; thus !ls is equivalent to shell ls.)

1.2.10 Transcript-based testing

If the entire transcript (input and output) of a successful session of a cmd2-based app is copied from the screen and
pasted into a text file, transcript.txt, then a transcript test can be run against it:

1.2. Features requiring no modifications 5

http://docs.python.org/library/cmd.html#module-cmd
http://docs.python.org/library/cmd.html#module-cmd
http://www.talug.org/events/20030709/cmdline_history.html

cmd2 Documentation, Release 0.6.9a

python app.py --test transcript.txt

Any non-whitespace deviations between the output prescribed in transcript.txt and the actual output from a
fresh run of the application will be reported as a unit test failure. (Whitespace is ignored during the comparison.)

Regular expressions can be embedded in the transcript inside paired / slashes. These regular expressions should not
include any whitespace expressions.

1.3 Features requiring only parameter changes

Several aspects of a cmd2 application’s behavior can be controlled simply by setting attributes of App. A parameter
can also be changed at runtime by the user if its name is included in the dictionary app.settable. (To define your
own user-settable parameters, see parameters)

1.3.1 Case-insensitivity

By default, all cmd2 command names are case-insensitive; sing the blues and SiNg the blues are equiv-
alent. To change this, set App.case_insensitive to False.

Whether or not you set case_insensitive, please do not define command method names with any uppercase
letters. cmd2 will probably do something evil if you do.

1.3.2 Shortcuts

Special-character shortcuts for common commands can make life more convenient for your users. Shortcuts are used
without a space separating them from their arguments, like !ls. By default, the following shortcuts are defined:

? help

! shell: run as OS-level command

@ load script file

@@ load script file; filename is relative to current script location

To define more shortcuts, update the dict App.shortcuts with the {‘shortcut’: ‘command_name’} (omit do_):

class App(Cmd2):
Cmd2.shortcuts.update({'*': 'sneeze', '~': 'squirm'})

1.3.3 Default to shell

Every cmd2 application can execute operating-system level (shell) commands with shell or a ! shortcut:

(Cmd) shell which python
/usr/bin/python
(Cmd) !which python
/usr/bin/python

However, if the parameter default_to_shell is True, then every command will be attempted on the operating
system. Only if that attempt fails (i.e., produces a nonzero return value) will the application’s own default method
be called.

6 Chapter 1. Resources

cmd2 Documentation, Release 0.6.9a

(Cmd) which python
/usr/bin/python
(Cmd) my dog has fleas
sh: my: not found

*** Unknown syntax: my dog has fleas

1.3.4 Timing

Setting App.timing to True outputs timing data after every application command is executed. The user can set
this parameter during application execution. (See parameters)

1.3.5 Echo

If True, each command the user issues will be repeated to the screen before it is executed. This is particularly useful
when running scripts.

1.3.6 Debug

Setting App.debug to True will produce detailed error stacks whenever the application generates an error. The user
can set this parameter during application execution. (See parameters)

1.3.7 Other user-settable parameters

A list of all user-settable parameters, with brief comments, is viewable from within a running application with:

(Cmd) set --long
abbrev: True # Accept abbreviated commands
case_insensitive: True # upper- and lower-case both OK
colors: True # Colorized output (*nix only)
continuation_prompt: > # On 2nd+ line of input
debug: False # Show full error stack on error
default_file_name: command.txt # for ``save``, ``load``, etc.
echo: False # Echo command issued into output
editor: gedit # Program used by ``edit``
feedback_to_output: False # include nonessentials in `|`, `>` results
prompt: (Cmd) #
quiet: False # Don't print nonessential feedback
timing: False # Report execution times

1.4 Features requiring application changes

1.4.1 Multiline commands

Command input may span multiple lines for the commands whose names are listed in the parameter
app.multilineCommands. These commands will be executed only after the user has entered a terminator. By
default, the command terminators is ;; replacing or appending to the list app.terminators allows different ter-
minators. A blank line is always considered a command terminator (cannot be overridden).

1.4. Features requiring application changes 7

cmd2 Documentation, Release 0.6.9a

1.4.2 Parsed statements

cmd2 passes arg to a do_ method (or default‘) as a ParsedString, a subclass of string
that includes an attribute ‘‘parsed. parsed is a pyparsing.ParseResults object produced
by applying a pyparsing grammar applied to arg. It may include:

command Name of the command called

raw Full input exactly as typed.

terminator Character used to end a multiline command

suffix Remnant of input after terminator

def do_parsereport(self, arg):
self.stdout.write(arg.parsed.dump() + '\n')

(Cmd) parsereport A B /* C */ D; E
['parsereport', 'A B D', ';', 'E']
- args: A B D
- command: parsereport
- raw: parsereport A B /* C */ D; E
- statement: ['parsereport', 'A B D', ';']

- args: A B D
- command: parsereport
- terminator: ;

- suffix: E
- terminator: ;

If parsed does not contain an attribute, querying for it will return None. (This is a characteristic of
pyparsing.ParseResults.)

ParsedString was developed to support sqlpython and reflects its needs. The parsing grammar and process are painfully
complex and should not be considered stable; future cmd2 releases may change it somewhat (hopefully reducing
complexity).

(Getting arg as a ParsedString is technically “free”, in that it requires no application changes from the cmd
standard, but there will be no result unless you change your application to use arg.parsed.)

1.4.3 Environment parameters

Your application can define user-settable parameters which your code can reference. Create them as class attributes
with their default values, and add them (with optional documentation) to settable.

from cmd2 import Cmd
class App(Cmd):

degrees_c = 22
sunny = False
settable = Cmd.settable + '''degrees_c temperature in Celsius

sunny'''
def do_sunbathe(self, arg):

if self.degrees_c < 20:
result = "It's {temp} C - are you a penguin?".format(temp=self.degrees_c)

elif not self.sunny:
result = 'Too dim.'

else:
result = 'UV is bad for your skin.'

self.stdout.write(result + '\n')

8 Chapter 1. Resources

http://pyparsing.wikispaces.com/
http://pypi.python.org/pypi/sqlpython/
http://docs.python.org/library/cmd.html#module-cmd

cmd2 Documentation, Release 0.6.9a

app = App()
app.cmdloop()

(Cmd) set --long
degrees_c: 22 # temperature in Celsius
sunny: False #
(Cmd) sunbathe
Too dim.
(Cmd) set sunny yes
sunny - was: False
now: True
(Cmd) sunbathe
UV is bad for your skin.
(Cmd) set degrees_c 13
degrees_c - was: 22
now: 13
(Cmd) sunbathe
It's 13 C - are you a penguin?

1.4.4 Commands with flags

All do_ methods are responsible for interpreting the arguments passed to them. However, cmd2 lets a do_ methods
accept Unix-style flags. It uses optparse to parse the flags, and they work the same way as for that module.

Flags are defined with the options decorator, which is passed a list of optparse-style options, each created with
make_option. The method should accept a second argument, opts, in addition to args; the flags will be stripped
from args.

@options([make_option('-p', '--piglatin', action="store_true", help="atinLay"),
make_option('-s', '--shout', action="store_true", help="N00B EMULATION MODE"),
make_option('-r', '--repeat', type="int", help="output [n] times")

])
def do_speak(self, arg, opts=None):

"""Repeats what you tell me to."""
arg = ''.join(arg)
if opts.piglatin:

arg = '%s%say' % (arg[1:].rstrip(), arg[0])
if opts.shout:

arg = arg.upper()
repetitions = opts.repeat or 1
for i in range(min(repetitions, self.maxrepeats)):

self.stdout.write(arg)
self.stdout.write('\n')

(Cmd) say goodnight, gracie
goodnight, gracie
(Cmd) say -sp goodnight, gracie
OODNIGHT, GRACIEGAY
(Cmd) say -r 2 --shout goodnight, gracie
GOODNIGHT, GRACIE
GOODNIGHT, GRACIE

options takes an optional additional argument, arg_desc. If present, arg_desc will appear in place of arg in
the option’s online help.

@options([make_option('-t', '--train', action='store_true', help='by train')],
arg_desc='(from city) (to city)')

1.4. Features requiring application changes 9

cmd2 Documentation, Release 0.6.9a

def do_travel(self, arg, opts=None):
'Gets you from (from city) to (to city).'

(Cmd) help travel
Gets you from (from city) to (to city).
Usage: travel [options] (from-city) (to-city)

Options:
-h, --help show this help message and exit
-t, --train by train

1.4.5 poutput, pfeedback, perror

Standard cmd applications produce their output with self.stdout.write(’output’) (or with print,
but print decreases output flexibility). cmd2 applications can use self.poutput(’output’),
self.pfeedback(’message’), and self.perror(’errmsg’) instead. These methods have these advan-
tages:

• More concise

– .pfeedback() destination is controlled by quiet parameter.

1.4.6 color

Text output can be colored by wrapping it in the colorize method.

1.4.7 quiet

Controls whether self.pfeedback(’message’) output is suppressed; useful for non-essential feedback that
the user may not always want to read. quiet is only relevant if app.pfeedback is sometimes used.

1.4.8 select

Presents numbered options to user, as bash select.

app.select is called from within a method (not by the user directly; it is app.select, not app.do_select).

def do_eat(self, arg):
sauce = self.select('sweet salty', 'Sauce? ')
result = '{food} with {sauce} sauce, yum!'
result = result.format(food=arg, sauce=sauce)
self.stdout.write(result + '\n')

(Cmd) eat wheaties
1. sweet
2. salty

Sauce? 2
wheaties with salty sauce, yum!

10 Chapter 1. Resources

cmd2 Documentation, Release 0.6.9a

1.5 Alternatives to cmd and cmd2

For programs that do not interact with the user in a continuous loop - programs that simply accept a set of arguments
from the command line, return results, and do not keep the user within the program’s environment - all you need are
sys.argv (the command-line arguments) and optparse (for parsing UNIX-style options and flags).

The curses module produces applications that interact via a plaintext terminal window, but are not limited to simple
text input and output; they can paint the screen with options that are selected from using the cursor keys. However,
programming a curses-based application is not as straightforward as using cmd.

Several packages in PyPI enable interactive command-line applications approximately similar in concept to cmd ap-
plications. None of them share cmd2’s close ties to cmd, but they may be worth investigating nonetheless.

• CmdLoop

• cly

• CmDO (As of Feb. 2010, webpage is missing.)

• pycopia-CLI

cmdln, another package in PyPI, is an extension to cmd and, though it doesn’t retain full cmd compatibility, shares its
basic structure with cmd.

I’ve found several alternatives to cmd in the Cheese Shop - CmdLoop, cly, CMdO, and pycopia. cly looks wonderful,
but I haven’t been able to get it working under Windows, and that’s a show-stopper for many potential sqlpython users.
In any case, none of the alternatives are based on cmd - they’re written from scratch, which means that a cmd-based
app would need complete rewriting to use them. I like sticking close to the Standard Library whenever possible. cmd2
lets you do that.

1.5. Alternatives to cmd and cmd2 11

http://docs.python.org/library/sys.html#module-sys
http://docs.python.org/library/optparse.html#module-optparse
http://docs.python.org/library/curses.html#module-curses
http://docs.python.org/library/curses.html#module-curses
http://docs.python.org/library/cmd.html#module-cmd
http://docs.python.org/library/cmd.html#module-cmd
http://pypi.python.org/pypi/CmdLoop
http://pypi.python.org/pypi/cly
http://pypi.python.org/pypi/CmDO/0.7
http://pypi.python.org/pypi/pycopia-CLI/1.0
http://pypi.python.org/pypi/cmdln
http://docs.python.org/library/cmd.html#module-cmd
http://docs.python.org/library/cmd.html#module-cmd
http://docs.python.org/library/cmd.html#module-cmd

cmd2 Documentation, Release 0.6.9a

12 Chapter 1. Resources

CHAPTER 2

Compatibility

Tested and working with Python 2.5, 2.6, 2.7, 3.1; Jython 2.5

13

cmd2 Documentation, Release 0.6.9a

14 Chapter 2. Compatibility

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

15

	Resources
	Overview
	Features requiring no modifications
	Features requiring only parameter changes
	Features requiring application changes
	Alternatives to cmd and cmd2

	Compatibility
	Indices and tables

